The present invention relates generally to the field of athletic equipment and training, human proprioceptive balance training, and more particularly to a mobile or portable slackline balancing and training device, and to training methods utilizing such a device.
Athletic training is an essential aspect to maintaining the physical conditioning, endurance, agility, strength and balance of a human or animal subject. Athletes may focus on a broad training regime or limit training to a particular area. In the field of balance training, and more particular dynamic balance training, a tensioned or slack line of webbing or rope mounted between two fixed points may be used as a training technique, commonly known as “slacklining.” The two fixed points must support the ends of the slackline and bear the weight of the athlete and span a challenging length.
Previously known mobile or portable balancing equipment designs typically lack sufficient length and rope tension adjustability needed to provide a desired degree of muscular challenge, and limit the potential training techniques or training regimens enabled thereby. For example, the distance between the two end supports commonly limits the amount of slack that may be allowed in the line before the line bottoms out against the frame or contacts the ground. Less slack in the line makes balancing and training less challenging for the athlete and reduces the dynamics of the line. Additionally, the short span of the line or minimal distance between the two fixed support points of known devices reduces the dynamics of the line and thereby limits the challenge.
Outdoor training using trees or other stationary outdoor structures is often the best option to provide both a challenging span and degree of line slackness. But training outdoors is often seen as a drawback to balance training and is dependent upon the location of suitable supports and associated weather. Further, securing the suspended rope to trees can be damaging and potentially life threatening to living plants.
Thus it can be seen that needs exist for improved slackline training apparatus and methods. It is to the provision of an improved system and method for dynamic balance training meeting these and other needs that the present invention is primarily directed.
In example embodiments, the present invention provides improved systems and methods for dynamic balance training. Example embodiments include a mobile balancing device for dynamic balance training. The mobile balancing device includes a suspended central beam member having a first end and a second end, a pair of symmetrical bow-like members mounted to the first and second ends of the suspended beam member, and a pair of end bracket assemblies mounting to the outer ends of the bow-like members and supporting the suspended beam member.
In one aspect, the present invention relates to a mobile or portable dynamic balancing system. The system preferably includes a canoe or bow-shaped frame structure having a central beam member and a pair of symmetrical radial or curved end beam members. The system preferably also includes a pair of end support structures for supporting the suspended beam members therebetween, each of the end supports having at least one mounting attachment for securing a line (such as a rope, cable, strap, cord or other flexible support member), wherein the structure supports a tensioned line bearing an applied load.
In another aspect, the invention relates to a method of assembling a mobile balancing device. The method preferably includes the steps of coupling the ends of first and second support arms to opposite ends of a central support beam, mounting first and second end supports to the outer ends of each support arm, mounting a flexible line to the first and second end support structure, and adjusting the degree of slackness or play in the flexible line.
In yet another aspect, the invention relates to a method of training on a dynamic balancing device. The method preferably includes the steps of adjusting the slackness and the height of a suspended line secured between the two end supports based on the skill level of the user, the user balancing on the suspended line while attempting an exercise or skill test comprising one or more positions or activities that are selected based on the skill level of the user, and balancing on the line while attempting one or more exercises to progressively increase the skill level, balance, and/or strength of the user.
In still another aspect, the invention relates to a training device. The training device preferably includes a central beam member having a first end and a second end, a pair of arcuate outer beam members, a pair of end bracket assemblies, and a flexible line. One arcuate outer beam member is preferably attached to the first end of the central beam member and the other is attached to the second end of the central beam member to form an elongate beam assembly. The end bracket assemblies support the elongate beam assembly therebetween and the flexible line extends between the bracket assemblies.
In yet another aspect, the invention relates to a training device. The training device preferably includes a pair of end supports having a base, an upright portion having a lower end attached to the base and an upper end extending away from the base, and an arm extending outwardly from the upright portion between the lower end and the upper end. A flexible line extends between the upright portions of the end supports proximal their upper ends and spans a length of at least ten feet, and a beam extends between the arms of the end supports.
In still another aspect, the invention relates to a method of training on a dynamic balancing device. The method preferably includes the steps of adjusting the tension and the height of a suspended line secured between the two end supports based on the skill level of the user. The user balances on the suspended line while attempting an exercise or skill test incorporating one or more positions or activities that are selected based on the skill level of the user. The position of the user's foot is varied between a first position aligned with the suspended line and a second position not aligned with the suspended line.
These and other aspects, features and advantages of the invention will be understood with reference to the drawing figures and detailed description herein, and will be realized by means of the various elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following brief description of the drawings and detailed description of the invention are exemplary and explanatory of preferred embodiments of the invention, and are not restrictive of the invention, as claimed.
The present invention may be understood more readily by reference to the following detailed description of the invention taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Any and all patents and other publications identified in this specification are incorporated by reference as though fully set forth herein.
Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
With reference now to the drawing figures, wherein like reference numbers represent corresponding parts throughout the several views,
In example embodiments, the mobile balancing device 10 comprises an elongated suspended support structure 12, a pair of end supports 40, and a suspended support band or line 14. The athlete 5 attempts to balance on the support band 14 while the elongated support structure 12 bears the stresses from the applied load of the user 5. In general, the elongated support structure 12 comprises a central suspended support beam 20 and a pair of symmetrical outer bow-like beam members 30. The end supports 40 elevate or suspend the elongated support structure 12 and anchor the ends of the suspended support band 14 that provides the user with a usable length L to train or balance (see
The elongated suspended support structure 12 comprises one or more beam members. In depicted embodiments, a linear central support beam 20 is coupled between two outer beam members 30. A first or inner end 30a of each outer beam member is engaged with opposite ends of the central support beam 20. The outer beam members 30 are arcuate or curved, and the central support beam 20 is generally straight, resulting in a generally bow-like configuration of assembly 12. The central support beam 20 and the outer beam members 30 have substantially complementary rectangular cross-sections to allow the ends of the outer beam members to be slidingly received within an internal channel of the central support beam as depicted in
Each of the end support structures 40 comprises a stability plate or base 46 for supporting the apparatus on the ground or other surface, and a symmetrical pair of upright plates 42 extending upwardly from the base. The base plate 46 extends outwardly, transverse to the lengthwise axis of the line 14, a sufficient distance to provide stability and prevent tipping during use. Each of the upright plates 42 has an arm 43 extending obliquely outward therefrom. The upright plates 42 are spaced a distance from one another to permit engagement of the outer ends of the outer beam members 30 between the arms 43 of the plates. One or more bolts, screws, pins or other connectors secure the outer beam members 30 to the end support structures 40 through cooperatively positioned holes in the outer beam members 30 and in the arms 43 of the upright plates. The arms 43 of the upright plates are positioned at a height above the base 46 sufficient to maintain the beam structure 12 suspended a distance above the ground level when loaded.
A plurality of mounting pins 44 extend between the upright plates 42 at different elevations to allow adjustment of the height of the line 14. Alternatively, a single repositionable mounting pin can be selectively positioned in one of a plurality of receiver openings to allow height adjustment. A line securing pin 48 or other attachment means is attached to or integral with the end support structure 40 for attachment of the suspended support band or line 14. The suspended support band or line 14 comprises a length of rope, nylon webbing, cable, strap, cord or other flexible support material having sufficient strength to carry the weight of an anticipated user. In example embodiments, the line 14 comprises a 1″-3″ inch woven nylon, polyester or polypropylene web with at least a 2,000 pound load rating. In alternate embodiments, the line comprises one or more other forms of strap, cable, rope, belt and/or other flexible member(s). A loop or hook 16 is provided at each end of the line 14 to affix to the securing pins 48 (see
The height of the end support structures 40 combined with the downward curvature of the bow-shaped beam assembly 12 away from the line 14 allows adjustment of the line length and/or tension to provide sufficient slackness to the line without the line “bottoming out” on the ground or the beam, and thereby maximize the usable length L of the line. In example embodiments, a vertical spacing H of about twelve inches between the center or trough of the bow-shaped beam assembly 12 and the uppermost line elevation (see
The “leaf spring” or bow shape of the support structure 12 withstands the bending moment caused by the user 5 placing all or part of their body weight on the suspended support band or line 14. The curvature of the outer beam members 30 distributes the stresses evenly along their length. The central support beam 20 preferably has a larger and/or stiffer construction than the outer beam members, and bears the bending moment where the maximum stresses occur when loaded. As depicted in FIG. 2A, in example embodiments, the central beam member 20 has a vertical dimension or height h1 greater than the vertical dimension or height h2 of the outer beam members 30. In alternate embodiments, the stiffness of the central support beam 20 is greater than the stiffness of the outer beam members 30 due to increased material thickness of the beam flanges or webs, by forming the central support beam of a solid bar of material and the outer beam members of channel or tube stock, and/or otherwise providing the central support beam with a greater moment of inertia than the outer beam members.
When a load is applied to the support band or line 14, the support structure 12 acts as a spring and elastically deforms. The elastic deformation of the support structure 12 causes the central suspended support beam 20 to move away from the loaded suspended support band 14 and causes the bases 46 to move in an opposing outward direction. Accordingly, the support structure 12 movement provides additional clearance for the loaded suspended band 14 and the outward movement of the bases 46 allows the support structure to flex under load. The bases 46 may alternatively be provided with low-friction or high-friction pads or contacts to either increase or decrease the resistance to movement of the apparatus along the support surface.
In example embodiments, the line height H, tension, and resulting oscillation of the suspended support band or line 14 are adjustable to accommodate a wide variety of skill levels among different users, or the increasing skill level of an individual user as he or she practices. For example, an experienced athlete may require a very loose suspended support band 14 having substantial amounts of oscillation to obtain a satisfactory workout, while a beginner athlete is likely to require a greater amount of line tension with smaller amounts of oscillation. To accommodate both the experienced athlete and the beginner athlete, the height H can be varied by the placement of the suspended support band 14 on different mounting pins 44. For the experienced athlete using a slacker line tension (and thus more sag and/or lateral play in the line when loaded), a greater height H is provided by selecting a higher pair of mounting pins 44 to carry the band 14 to ensure the suspended support band will maintain clearance from the support structure 12 and not bottom out (as shown in solid lines in
In example forms, the mobile balancing device 10 is fastened together with threaded bolts and nuts, or other removable fasteners, to allow disassembly and easier storage or portability. In further embodiments, the fasteners can include pins, hinges, brackets, welds, or other fasteners of the like. In particular embodiments, the threaded bolts are a button head socket cap style. In an example method of assembly, the mobile balancing device 10 is assembled using two bolts for each point of connection. The second end 30b of each outer beam member is secured to each arm 43 of the end support structure 40. The first end 30a of each outer beam member is slidably engaged and secured within each end of the central support beam 20 internal channel. Depending upon the desired height, the line is placed on the top of the appropriate end support structure mounting pin and affixed to the securing pins. The ratcheting hand winch is operated to tension the line to provide a desired slackness.
In an example method of use, the above described apparatus enables a training regimen to develop and progressively increase the strength, skill level and/or balance of the user. The training regimen optionally comprises one or more of four separate protocols varying upon the skill level (beginner, intermediate, advanced, and expert). Each protocol comprises instructions for the appropriate height H and tension of the suspended support band 14, a skill test to determine the current skill level of the user 5, and one or more training activities or exercises. Accordingly, as the skill level of the athlete improves, the vertical elevation or distance H in line height is increased and the line tension is decreased. Additionally, a stepping box 100 can optionally be placed alongside the suspended support structure to reduce the distance between the suspended support band 14 and the ground (see
In an example method of use, a user or athlete follows the beginner training protocol. A strap is preferably attached to both sides at the lowest height upright pin and tensioned tightly. The athlete stands with one foot on the tensioned strap and the other on the floor or stepping box. The athlete gently pushes off of the toe of the foot on the ground and applies their full body weight to the foot that is placed on the strap (see
In another example method of use, a user or athlete follows the intermediate training protocol. A strap is preferably attached to both sides of the middle height upright pin and tensioned tightly. The athlete stands with one foot on the tensioned strap and the other on the floor. The athlete gently pushes off of the toe of the foot on the ground and applies their full body weight to the foot that is placed on the strap. The athlete attempts to balance on the strap in each of the three foot directions (parallel, perpendicular, and 45 degrees) using each foot for two minutes. The athlete completes/masters the exercise when balance can be maintained for at least ten seconds in all three foot directions.
In another example method of use, a user or athlete follows the advanced training protocol. A strap is preferably attached to both sides of the highest height upright pin and tensioned tightly. The athlete stands with one foot on the tensioned strap and the other on the floor. The athlete gently pushes off of the toe of the foot on the ground and applies their full body weight to the foot that is placed on the strap. The athlete attempts to balance on the strap in each of the three foot directions (parallel, perpendicular, and 45 degrees) using each foot for one minute. The athlete attempts to walk slowly and controlled on the strap for three minutes, wherein a completed walk is five deliberate, slow, controlled steps. Additionally, the athlete holds an appropriately weighted dumbbell or weight in each hand, preferably arms bent and hands at ear level, and attempts to balance on the strap in the parallel foot direction using each foot for one minute intervals. Further, to add perturbation to the balance challenge the athlete attempts to balance on the strap in the parallel foot direction while bending their knee or squatting. The athlete completes/masters the exercise when balance can be maintained for at least twenty seconds in all three foot directions.
In an example method of use, a user or athlete follows the expert training protocol. A strap is preferably attached to both sides of the highest height upright pin and tensioned loosely. The athlete stands with one foot on the tensioned strap and the other on the floor. The athlete gently pushes off of the toe of the foot on the ground and applies their full body weight to the foot that is placed on the strap. The athlete attempts to balance on the strap in each of the three foot directions (parallel, perpendicular, and 45 degrees) using each foot for one minute. The athlete attempts to balance on the strap while squatting for thirty seconds in each of the three foot directions. The athlete attempts to balance on the strap while holding a weight in each hand, preferably arms bent and hands at ear level, for thirty seconds in all three foot directions. For three minutes, the athlete attempts multiple five step walks on the strap and maintains balance on the strap when turning around. Additionally, the athlete attempts to balance on the strap using both feet for two minutes in both perpendicular and 45 degree foot directions. The athlete completes/masters the exercise when balance can be maintained while walking five steps, squat and hold for ten seconds, holding weights in any foot direction for twenty seconds.
In continuation of the expert training protocol, the athlete optionally completes one or more additional training activities to add further perturbations and challenges, such as: (1) The athlete attempts to balance on the strap for one minute in each of the three directions while catching and throwing a weighted ball; (2) The athlete attempts to balance on the strap for two minutes in each of the three foot directions while switching a weight with handle or kettlebell from hand to hand; (3) The athlete attempts to balance on the strap in each of the three foot directions while supporting a weighted/sand bag above the shoulders or by the arms. Additionally, other stabilizing exercises can be performed while using the apparatus. For performing an arm press exercise, the athlete sits on the strap and places the palm of the hands on the strap with fingers facing forward. The athlete presses into the line, straightening the elbows, and lifting the entire body. For performing a push up exercise, the athlete places the palm of the hands on the strap and straightens the legs while keeping the feet in contact with the ground. The athlete presses into the line, straightening the elbows, and lifting the entire upper body. For performing a plank exercise, the athlete places one or two palms on the strap and one or two feet on the strap. Without the core body touching the strap, the athlete attempts to maintain balance.
The balancing device 10 can be constructed of steel, aluminum, composites (i.e carbon fiber or fiber glass), plastics, other known materials or combination herein. As each material has specific material properties, the physical behavior or flexure of the device 10 may vary from one material to the other, resulting in different beam geometries. For example, carbon fiber may allow a minimum vertical distance H of 8 inches to prevent bottoming out versus a twelve inch vertical distance H for a structurally similar embodiment constructed of steel.
While the invention has been described with reference to preferred and example embodiments, it will be understood by those skilled in the art that a variety of modifications, additions and deletions are within the scope of the invention, as defined by the following claims.
This application is a divisional of U.S. Non-Provisional Patent Application Ser. No. 13/297,543 filed Nov. 16, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/415,101 filed Nov. 18, 2010, the entireties of which are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61415101 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13297543 | Nov 2011 | US |
Child | 14625778 | US |