This invention relates generally to the field of downhole pumping systems, and more particularly to a downhole pumping system well suited for pumping fluids with entrained solid particles.
Submersible pumping systems are often deployed into wells to recover hydrocarbons from subterranean reservoirs. Typically, a submersible pumping system includes a number of components, including an electric motor coupled to one or more pump assemblies. Production tubing is connected to the pump assemblies to deliver the hydrocarbons from the subterranean reservoir to a storage facility on the surface. Each of the components in a submersible pumping system must be engineered to withstand the inhospitable downhole environment.
The efficient recovery of hydrocarbons from wells depends on maintaining clean formations, casing perforations, lines and pumping equipment. Unfortunately, many oil wells produce fluids that contain large amounts of sold particles, or “slag,” that are detrimental to downhole pumping components. Metallic slag often takes the form of iron sulfide particles of various sizes (0.0005″ to 0.060″ diameter) that are very hard (6-6.5 Mohs Scale). These and other particles tend to accelerate wear on downhole components as the solid particles are carried through the downhole pumping system with the produced fluid.
It is therefore desirable to prevent solid particles from contacting expensive components within the downhole pumping system. Despite the recognition of these problems, prior art attempts to protect downhole components from solid particles have proven ineffective or otherwise undesirable. It is to these and other deficiencies in the prior art that the present invention is directed.
In a preferred embodiment, the present invention provides a grinder pump assembly that includes at least one grinder pump stage and a diffuser cap. The grinder pump stage has a diffuser and an impeller. The impeller preferably includes a plurality of upper vanes and lower vanes. The diffuser preferably includes a plurality of lower contact surfaces, a plurality of diffuser vanes and a plurality of upper contact surfaces. The upper vanes of the impeller are configured to rotate in proximity with the lower contact surfaces on the diffuser. The lower vanes of the impeller are configured to rotate in proximity with contact surfaces on the diffuser cap. In alternate embodiments, multiple grinder pump stages are used within a single grinder pump assembly.
In accordance with a preferred embodiment of the present invention,
The pumping system 100 preferably includes some combination of a primary pump assembly 108, a motor assembly 110, a seal section 112 and a grinder pump assembly 114. The seal section 112 prevents the entry of well bore fluids into the motor 110 and shields the motor assembly 110 from mechanical thrust produced by the primary pump assembly 108. The motor assembly 110 is provided with power from the surface by a power cable 116. Although only one primary pump assembly 108 and one motor assembly 110 are shown, it will be understood that additional pumps and motors can be connected within the pumping system 100 to meet the requirements of particular applications.
The grinder pump assembly 114 is preferably located between the seal section 112 and the primary pump assembly 108 such that the output of the grinder pump assembly 114 feeds the primary pump assembly 108. In this position, the grinder pump assembly 114 functions as an intake for the primary pump assembly 108. The grinder pump assembly 114 is configured to pulverize and reduce the size of solid particles entrained in the well fluid before the particles reach the primary pump assembly 108.
Turning to
The grinder pump assembly 114 also includes at least one grinder pump stage 126. In a particularly preferred embodiment, the grinder pump assembly 114 includes a plurality of minder pump stages 126, as shown in
The diffuser cap 132 and diffusers 130 are preferably locked in a stationary position relative the housing 118. In contrast, each of the impellers 128 are preferably keyed to the shaft 134 and configured for rotation relative the stationary diffusers 130. As each impeller 128 rotates, it imparts kinetic energy on the fluid to the wellbore. In accordance with well-known fluid mechanics, a portion of the kinetic force is transformed into pressure head by the downstream diffuser 130. In this sense, the grinder pump assembly 114 functions in as a multistage centrifugal pump.
Unlike prior art centrifugal pumps, however, each impeller 128 and diffuser 130 is configured to pulverize solid particles entrained in the well fluid. Turning to
The impeller 128 preferably includes a hub 136, a vane support 138, a plurality of upper vanes 140 and a plurality of lower vanes 142. The hub 136 preferably includes a slot 144 for engagement with a corresponding key (not shown) on the shaft 134 (also not shown in
The upper side of the diffuser 130 preferably includes a cup 146 of sufficient size diameter and depth to accept with small tolerances the lower vanes 142 of the impeller 128. The surface of the cup 146 includes a plurality of upper contact surfaces 148 and upper flow channels 150. As shown in
Turning to
Turning to
Each grinder pump stage 126 is preferably constructed from a hardened metal alloys. Suitable alloys are available from Haynes International, Inc. under the “Hastelloy” trademark. It will be understood that the number of grinder pump stages 126 within the grinder pump assembly 114 can be adjusted to meet the degree of pulverization required for a particular well fluid condition.
In the preferred embodiment, well fluid and entrained solid particles enter the grinder pump assembly 114 through the intake ports 124. The fluid passes in a downstream direction through the diffuser cap 132 where the lower vanes 142 of the upstream impeller 128 grind the solid particles against the cap contact surfaces 164. Pulverized particles and fluid pass through the cap flow channels 166 around the vane support 138 and into the upper vanes 140. The upper vanes 140 grind solid particles against the lower contact surfaces 160 on the lower face 154 of the adjacent downstream diffuser 130. The fluid and pulverized particles pass through the lower flow channels 162 into the diffuser vanes 158 and into the cup 146 on the downstream side of the diffuser 130. The lower vanes 142 of the subsequent downstream impeller 128 (if one is used) grind remaining solid particles against the upper contact surfaces 148 of the cup 146.
If multiple grinder pump stages 126 are used, it may be desirable to modify the geometry of the contact surfaces and flow channels and the tolerances between the vanes of the impellers 128 and the contact surfaces to produce a graduated pulverization effect. If graduated pulverization is desired, the spacing between adjacent contact surfaces and between the contact surfaces and impeller vanes should be sequentially decreased at each grinder pump stage 126 from the upstream portion of the grinder pump assembly 114 to the downstream portion of the grinder pump assembly 114.
It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing to description, together with details of the structure and functions of various embodiments of the invention, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. It will be appreciated by those skilled in the art that the teachings of the present invention can be applied to other systems without departing from the scope and spirit of the present invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/796,629, entitled “Grinder Pump for Oil Well Fluids,” filed May 2, 2006, the disclosure of which is herein incorporated.
Number | Name | Date | Kind |
---|---|---|---|
1387660 | Ostenberg | Aug 1921 | A |
2670686 | Bergh | Mar 1954 | A |
3961758 | Morgan | Jun 1976 | A |
4781531 | James | Nov 1988 | A |
4948351 | Williams | Aug 1990 | A |
4981420 | Jensen et al. | Jan 1991 | A |
5659214 | Guardiani et al. | Aug 1997 | A |
5674057 | Guardiani et al. | Oct 1997 | A |
6139260 | Arbeus | Oct 2000 | A |
6361272 | Bassett | Mar 2002 | B1 |
6364620 | Fletcher et al. | Apr 2002 | B1 |
6481973 | Struthers | Nov 2002 | B1 |
20050074331 | Watson | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
06323291 | Nov 1994 | JP |
Number | Date | Country | |
---|---|---|---|
60796629 | May 2006 | US |