Coin processing devices such as coin redemption machines allow users to exchange bulk coins deposits for another form of currency such as currency bills, a receipt that can be applied toward future purchases, or credited to an account. Typically, coin redemption machines are disposed in public locations such as in a retail store or bank. As such, there exists a need to house coins processed by the coin processing machines in a secure environment.
According to one embodiment, a security grate for limiting access to a coin bin is disclosed. The security grate comprises a plurality of generally parallel upper slats and a plurality of generally parallel slats disposed below the upper slats. The plurality of first slats receives coins and directs coins moving under the force of gravity in a first direction. The plurality of lower slats receive coins from the upper slats and direct the coins moving under the force of gravity in a second direction.
In another aspect, a security grate for a coin bin includes a plurality of slats that define at least one coin path extending between a coin input area to an interior volume of an associated coin bin. The plurality of slats collectively defining a coin path that directs coins input thereto in a first direction along the coin path and in a second direction different than the first direction.
In still another aspect, a security grate for limiting access to a coin bin is provided which includes a plurality of upper slats and a plurality of lower slats disposed substantially below the plurality of upper slats. The plurality of upper slats are disposed to receive coins and direct coins moving thereby in a first direction and the plurality of lower slats are disposed to receive coins from the plurality of upper slats and direct the coins in a second direction.
In yet another aspect, there is provided a security grate for limiting access to a coin bin which includes a first coin path defined by at least a first upper slat and a first lower slat, the first upper slat being disposed in a generally downwardly first direction and the first lower slat being disposed in a generally downwardly second direction. A second coin path is defined by at least a second upper slat and a second lower slat, the second upper slat being disposed in the aforementioned first direction and the second lower slat being disposed in the aforementioned second direction. A third coin path is defined by at least a third upper slat and a third lower slat. The third upper slat is disposed in a generally downwardly third direction and the third lower slat is disposed in a generally downwardly fourth direction. The first upper slat, second upper slat, and third upper slat are disposed to receive coins from a coin source and to facilitate movement of such coins downwardly to the respective first lower slat, second lower slat, and third lower slat. Gaps between adjacent slats are dimensioned slightly larger than the diameter of the largest coin to be passed therethrough.
In another aspect, a coin bin for holding coins from a coin processing device, includes a plurality of walls, a floor, and a movable cover defining an interior volume for holding coins. The coin bin also includes at least one coin input area for receiving coins from the coin processing device, the coin input area protruding from the movable cover, and at least one security grate disposed within the at least one coin input area.
This summary of the present invention is not intended to represent each embodiment, or every aspect, of the present concepts. Additional features and benefits of the present concepts are apparent from the detailed description, figures, and claims set forth below.
While the invention is susceptible to various modifications and alternative forms, specific embodiments are shown by way of example in the drawings and are described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Referring now to the drawings, and initially to
The coin processing device 14 includes a coin input tray 16 for receiving coins from a user of the device 14. The coin input tray 16 includes a perforated bottom 18 for sifting out debris included with input coins. Once coins are received in the input tay 16, the user upwardly pivots (as shown in
A user interface 20 is disposed on the front of the coin processing device 14 for receiving user inputs and for displaying information to the user. According to one embodiment, the user interface 20 may comprise a touch-screen-type user interface. In other embodiments, the user interface may comprise a separate display and keypad.
The coin processing device 14 further includes a media slot 22 into which the user may insert an account card (e.g., a bank card such as an ATM card, an identification card including the type distributed by grocery stores, a smartcard, etc.). The media slot 22 is coupled to a media reader device or a media reader/writer device in the coin processing device 14 that is capable of reading from or writing to one or more types of media including ATM cards, credit card, smartcards, or other types of media cards. This media may include various types of memory storage technology such as magnetic storage, solid state memory devices, and optical devices. The user interface 20 typically provides the user with a menu of options which prompts the user to carry out a series of actions for identifying the user by displaying certain commands and requesting that the user input information (e.g., a user PIN, account number, etc.).
In general, when the coin processing device is used in a coin redemption application, the coin processing device 14 receives from a user as described, and after these deposited coins have been processed (e.g., authenticated, counted, sorted, or otherwise processed), the coin processing device 14 outputs a receipt to the user indicative of the dollar amount of the deposited coins. The user can redeem the receipt for funds from an attendant of the coin machine 14. An attendant may include a store employee such as a cashier at a grocery store or a teller at a bank. Alternatively, the user can redeem the receipt for credit towards purchases at the store where the machine is located.
Referring also to
The front plate 24 includes a pocket 34 centrally located between the first side plate 30 and the second side plate 32, and a coin removal opening 36 located below the pocket 34. The pocket 34 is vertically oriented along the front plate 24, with its width being parallel to the cover 28, and it protrudes out of the front plate 24. The pocket 34 has a first open end 38 and a second open end 40, and it includes a pin hole 42 located proximate the first open end 38. The coin removal opening 36 is located next to the second open end 40 and it has a generally rectangular shape with a width smaller than the width of the pocket 34. An adjusting pin 44 is connected to the pocket 34 and can be inserted into the pin hole 42.
A gate 46 is a generally rectangular plate that includes at least one adjusting hole and a gate ridge 48, which has a first locking hole 50 located in a central position. The gate 46 slides through the pocket 34 between an up position and a down position. When in the up position, coins are allowed to move through coin removal opening 36. When the gate is in the down position, the gate 34 prohibits coins from moving through the coin removal opening 36. The gate 34 has a plurality of position setting for when in the up position to allow an attendant to adjust the removal rate of the coins. The pin 44 is used to fix the gate 46 in a particular up-position setting, as desired by the attendant, by protruding through one of the adjusting holes located in the gate 46. To release coins, the attendant pulls the pin 44, raises the gate 46 to the desired setting by lining up one of the adjusting holes, if there are more than one, with the pin hole 42, and then pushing the pin 44 into both the pin hole 42 and the adjusting hole to fix the gate 46 in the up position. Consequently, the coins inside the coin bin 12 are ready for removal. For a higher coin removal rate the pin 44 should be inserted into an adjusting hole that is located further away from the gate ridge 48, while for a lower coin removal rate the pin 44 should be inserted into an adjusting hole that is located closer to the gate ridge 48. To prevent the removal of coins, the attendant pulls the pin 44 and lowers the gate 46 until the coin removal opening 36 is completely covered by the gate 46.
The front plate 24 includes a handle 52 which is C-shaped and is made from a tube, such as a circular pipe. The handle 52 has in general three sections, a middle section 54 and two lateral sections 56, 58, each of the lateral sections being connected to the front plate 24 at a first pivoting point 60 and a second pivoting point 62. The handle 52 has two main positions, a collapsed position, as shown in
In other embodiments the front plate 24 also includes identification plates 64 that are located near the second pivoting point 62. The identification plates 64 can be used to identify relevant information regarding the coin bin 12 or the coin processing device 14, such as the coin bin model, the coin machine model, the owner of the coin bin 12, or the owner of the coin processing device 14, or other identification information.
The cover 28 is a lid that pivots on one end to the back plate 26 by using a first hinge 66 that covers nearly the entire width of the cover 28. The first hinge 66 allows the cover 28 to swing between an open position (
The cover 28 includes a locking plate 68 that is connected to the cover 28 with a second hinge 70. Because the locking plate 68 is hinged to the cover 28, it is free to pivot around the second hinge 70 having in general a locked position and an unlocked position. In general, the locking plate 68 is a rectangular plate having a ridge 72 at one end. The ridge 72 has a second locking hole 74 which is centrally located on the ridge 72, and which has the same general size and shape as the first locking hole 50. Similarly, the ridge 72 has the same general size and shape as the gate ridge 48. When the locking plate 68 is in the locked position, the ridge 72 fits generally over the gate ridge 48 having the second locking hole 74 line up with the first locking hole 50 on the gate 46. Consequently, the locking plate 68 and the gate 46 can be locked using a single locking device, such as a padlock. Therefore, the present invention contemplates a single-locking mechanism comprising the locking plate 68, the gate 46, and a single locking device that locks both openings to the coin bin 12.
Additionally, the cover 28 also includes a long slot 76 that is located in a generally central position for holding the locking plate 68 in a fixed position via a detent mechanism. When the cover 28 is in the open position, the long slot 76 can be used to prevent the locking plate 68 from interfering with the deposit of coins, by holding the locking plate 68 in a stationary position that does not interfere with the coin depositing opening 33. For example, the locking plate 68 can be swung upwards in a clockwise motion and laid flat on the cover 28 having the ridge 72 protruding through the long slot 76, wherein the ridge 72 can be temporarily secured in the long slot 76 using a detent mechanism or structure, e.g., a spring-loaded pin. The long slot 76 can also be used for the insertion of miscellaneous items after the coin bin 12 is locked by the user. Very often, for security reasons, the person transporting the coin bin 12 from one place to another cannot unlock it. However, additional items may have to be placed inside the coin bin 12, such as additional coins or verification receipts, after the coin bin 12 is locked. For example, when a person transporting the coin bin 12 delivers the bin 12, a verification receipt describing the status of the coin bin 12 (e.g., where the coin bin 12 was brought from, how much money is supposed to have, the name and signature of the transporting person, etc.) can be inserted through the long slot 76. Also, the long slot 76 can function as a visual check for an attendant to see how many coins are inside the coin bin 12, i.e., whether the coin bin 12 is full or empty.
Referring now to
In another embodiment the coin bin 12 includes a number of separating plates 79 for dividing the coin bin 12 into a plurality of compartments (
The coin bin 12 also includes a bottom plate 80 which includes a plurality of wheels 82. Four wheels 82 are located in each corner of the bottom plate 80 to facilitate the easy movement of the coin bin 12 from one place to another. The wheels 82 are readily available commercial casters, selected to withstand the several hundred pound weight of the coins and coin bin 12. In other embodiments, the number of wheels varies from two wheels to as many as desired.
In another embodiment, the bottom plate 80 preferably has a number of grooves 84 which are separated by a central bar 86. Each one of the grooves 84 and the central bar 86 has two ends which form a longer dimension, the length, and are oriented such that one end of the length is near the front plate 24 while the other end is near the back plate 26. One of the functions of the grooves 84 is to allow the transportation of the coin bin 12 by using a forklift device, such as a hand or a motorized truck. In other embodiments two more side bars can be located parallel to the central bar 86 such that they restrict the forklift device from moving sideways, towards the wheels 82.
In other embodiments of the present invention, any one or more of the sloped surface 78, the front plate 24, the first side plate 30, the second side plate 32, the back plate 26, the cover 28, and the separating plates can be covered with a laminated material having multiple layers. The laminated material has two outer layers which are made of a metal, and a thin inner layer which is made of a non-metal that holds the outer two layers together. The thin inner layer serves to dampen the vibrations of coins impacting the outer layers. The inner layer converts the vibrational energy into thermal energy. The laminated material comes in a variety of thicknesses, with the smallest one being about 0.04 inch and the largest being about 0.375 inch. Preferably, the laminated material is a stainless steel. Such materials are available through various sources, including Classic Sheet Metal in Schiller Park, Ill. A laminated material similar to the one that was described above is described in greater detail in U.S. Patent Application Publication No. US 2002/0130011 A1, entitled “Coin Processing Machine Having Coin-Impact Surfaces Made From Laminated Metal,” which was filed on Mar. 19, 2001 and is incorporated herein by reference in its entirety.
Referring now to
The coin bin 100 is similar in several respects to the coin bin illustrated in
The coin bin 100 includes a cover having a stationary portion 127 that does not move and a pivotal lid 128 that is a pivotally attached to the coin bin 100 by a hinge 166. The pivotal lid 128 upwardly pivots to allow access to the coins contained within the coin bin 100. A locking plate 168 is hingedly attached to the front end of the pivotal lid 128. The locking plate 168 is used for locking the pivotal lid 128 and the gate 146 to prevent opening the pivotal lid 128 or the gate 146 as is described above in connection with
Referring also to
Referring also to
The bidirectional coin paths 212, 214 of the security grate 200 effectively prohibit or inhibit a person from accessing the coins within the coin bin 100 through the coin input areas 102, 104 of the storage bin. Put another way, the nonlinear nature of the coin paths 212, 214 prohibit an unscrupulous person from reaching into the coin bin 100. When the gate 144 is locked to the locking plate 168 via a padlock, for example, as is described above, the coin bin 100 provides a secure receptacle for holding coins. Thus, only those authorized to access the coins in the coin bin 100 may access the coins when the gate 144 and locking plate 168 are locked.
The dimensions of the security grate 200 are described according to one embodiment of the present invention. The upper slats 202 are disposed a distance d1 from an adjacent upper slat 202 in a direction normal to an upper slat 202. The lower slats 204 are also disposed an approximately equivalent distance d1 from an adjacent lower slat 204. The distance d1 is slightly larger than the diameter of the largest coin to be processed. When, for example, the coin processing device 10 is placed in a grocery store in the U.S., the largest-diameter coin typically encountered is a U.S. half-dollar, which has a diameter of about 1.205 inch. And, in this application, the distance d1 would be about 1.31 inch. In the horizontal direction, the pairs of slats 202, 204 are disposed a distance d2 from the adjacent pair of slats 202, 204. The distance d2 is about 2.62 inches according to one embodiment of the present invention. Each of the upper slats 202 are disposed at an angle α relative to the pivotal lid 128 of about 30°. Each of the lower slats 204 are disposed at an angle β, which is about 60°, relative to the respective upper slats. The lower slats 204 are downwardly angled from the horizontal at an angle φ of about 30°. The upper and lower slats 202, 204 are similarly dimension according to one embodiment of the present invention and have a width of about 5 inches and a length of about 3 inches.
These dimensions may be varied in other alternative embodiments of the present invention. For example: d1 may range between about 1.25 inch and about 1.30 inch; d2 may range between about 2.50 inch and about 2.76 inch; angle α may range between about 22° and about 90°; angle β may range between about 44° and about 180°; angle φ may range between about 22° and about 90° inch; the width of the upper and lower slats vary may range between about 1.25 inches and about infinite inches; and the length of the upper and lower slats vary may range between about 2.50 inches and about 10 inches according to various alternative embodiments of the present invention. Alternatively, the upper slats 202 may be sized differently than the lower slats 204 of the security grate 200.
Referring now to
As is apparent from the foregoing, the security grate 200 provides a physical barrier, or at least a physical deterrent from, for preventing an unauthorized individual from accessing coins contained within the coin bin 100. Further, the security grate 300 also provides a visual barrier, or a visual deterrent, for preventing an unauthorized individual from visually accessing the coins contained within the coin bin. Put another way, due to the slats 202, 204 angling in one direction and then the other, a person cannot view the coins contained within the coin bin. Thus, the security grates 200 provide a psychological barrier to prevent an unauthorized individual person from accessing the coins contained within the coin bin.
Thus far, the security grate has been discussed as a security feature to prevent unauthorized individuals from accessing coins contained within the coin bin. However, in other alternative embodiments of the present invention, other security features may be implemented. For example, a security screen may cover the apertures 190 (
Many other types of security features may also be implemented in alternative embodiments of the present invention.
Referring now to
The illustrated coin bin 400 is similar in respects to the exemplary coin bins illustrated in
Referring to
Slats 411, 412 are similar to those slats shown in
The bidirectional coin paths 421, 422 of the security grate 410 effectively prohibit or inhibit a person from accessing the coins within the coin bin 400 through the coin input areas 402, 404. Only those authorized to access the coins in the coin bin 400 may access the coins through appropriately secured access points.
In one aspect, the upper slat 421 of a slat 411 is disposed substantially parallel to and spaced apart from a corresponding upper slat 421 of slat 412 by a distance d1. The lower slats 422 are also disposed an approximately equivalent distance d1 from an adjacent lower slat. The distance d1 is slightly larger than the diameter of the largest coin to be processed. For U.S. currency, the largest-diameter coin typically encountered is a U.S. half-dollar, which has a diameter of about 1.205 inch, which would require the distance d1 to be at least about 1.31 inch. In the horizontal direction, slats 411, 412 are disposed a distance d2 from one another, which may be about 2.11 inches according to one embodiment. The upper slats 421 are disposed at an angle (e.g., α as shown in
Further to slats 411, 412, the example of
Slat 413 includes an elongated portion 427 and a base portion 428. The elongated portion 427 extends outwardly and downwardly from the security grate 410. The base portion 428 is attached to the security grate 410 using conventional mechanical attachment devices including but not limited to tongue or slot and groove or mechanical fasteners. Alternatively, the base portion of slat 413 may be integrally formed as a part of the security grate by processes including, but not limited to, stamping. In the aspect illustrated in
The multi-directional coin paths, including but not limited to the illustrated first, second, and third coin paths 423, 424, 425, of the security grate 400 effectively prohibit or inhibit a person from accessing the coins within the coin bin 400 through the coin input areas 402, 404 of the storage bin. Put another way, the non-linear nature of the coin paths 423, 424, 425 prohibit unauthorized access to the coin bin 400. This multi-directionality could be accomplished using a combination of slats having any size and/or configuration. The security grate 410 may also advantageously utilize curved or curvilinear slats to the same end.
FIGS. 19 and 21-23 show a plurality of slots or apertures 450 within the side portions of security grate 410. These apertures 450 are advantageously provided as attachment and/or securement devices for slats 411, 412, 414, 415, and 416, which are provided with outwardly extending tabs or protrusions corresponding substantially in size and shape to the size and shape of the apertures. The slat tabs fit into the corresponding apertures 450 and hold the slats in place at multiple points to maintain the position of the slats as the slats are contacting by the moving coins. Flanges 460 are provided to facilitate mounting of the security grate 410 within the respective coin receiving area 402, 404 mounting structure. As shown in
As is apparent from the foregoing, the security grate 410 provides a physical deterrent, as well as a visual deterrent, which discourages and prevents unauthorized entry into or tampering with the contents of the coin bin 400. Due to the aforementioned slats 411-416, and any variants thereof, providing multi-directional coin paths wherein coins are caused to move along a convoluted pathway, a person cannot view or access the coins contained within the coin bin 400 through the security grate 410. Thus, the security grates 410 provide a real barrier, as well as a psychological barrier, to prevent an unauthorized persons from accessing coins contained within the coin bin 400.
Other security features may be implemented in combination with the above aspects. For example, a security screen may cover the aforementioned coin input areas whole providing openings sized large enough to allow coins to flow through the screens (e.g., openings dimensioned slightly larger than the diameter of the largest coin to be processed), but small enough to prevent a human hand from reaching through a screen opening to access coins contained within the coin bin. The screen is constructed out of a strong material such as metal, for example, and sized such that is difficult to cut or otherwise damage the screen in an unauthorized attempt to access the coins contained within the coin bin. Other types of security features to prevent unauthorized access into the coin bin may also be implemented in alternative embodiments of the present invention so long as the added security features do not unduly interfere with the movement of coins through the security feature and into the coin bin.
The inventors have found that the aforementioned security features not only prevent unauthorized access into the coin bins (e.g., reaching through the security feature), but also facilitate the free flow of coins through the security feature and into the coin bin. Further, the security slats have been found to effectively increase the coin capacity of the coin bins by helping to create a uniform coin distribution and by helping to prevent jamming and overflow of coins. In one aspect, the slats were able to increase the capacity of the coin bins significantly for a predetermined mix of coins (e.g., the Cummins mix). This increase in capacity permits longer periods of coin bin utilization for a given coin bin geometry and, depending upon the application and location, fewer pickups by currency transport services, with an attendant reduction in operating costs associated therewith.
While the invention is susceptible to various modifications and alternative forms, specific embodiments are shown by way of example in the drawings and herein described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
This application is a divisional of U.S. patent application Ser. No. 10/966,857, entitled “Coin Bin Having A Security Feature For Limiting Coin Access for Use With A Coin Processing Device,” which was filed on Oct. 14, 2004, and is hereby incorporated by reference in its entirety, and this application further claims priority to U.S. Provisional Application Ser. No. 60/511,039, entitled “Coin Bin Having Security Feature For use With a Coin Processing Device,” which was filed on Oct. 14, 2003.
Number | Name | Date | Kind |
---|---|---|---|
1268723 | Johnson | Jun 1918 | A |
1946736 | Frey | Feb 1934 | A |
3375912 | Weitzman | Apr 1968 | A |
3403459 | Divilbiss | Oct 1968 | A |
3685202 | Morrison | Aug 1972 | A |
4005662 | Kohn et al. | Feb 1977 | A |
4170947 | Morgan | Oct 1979 | A |
4230213 | Spring | Oct 1980 | A |
4756406 | Grounds | Jul 1988 | A |
5080251 | Noack | Jan 1992 | A |
5619821 | St. George et al. | Apr 1997 | A |
5806652 | Johnson et al. | Sep 1998 | A |
5880394 | Kim | Mar 1999 | A |
6672195 | Plattner | Jan 2004 | B1 |
6811401 | Cruickshank | Nov 2004 | B1 |
20060196754 | Bochonok et al. | Sep 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060196754 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
60511039 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10966857 | Oct 2004 | US |
Child | 11267609 | US |