The present subject matter relates generally to slats configured for use with coverings for architectural structures and, more particularly, to slats having an improved route hole configuration that provides enhanced light blocking capabilities and increased privacy for an associated covering as compared to slats having conventional route holes. In addition, the present subject matter is also directed to related manufacturing methods for forming an improved route slot within a slat as well as coverings made with slats having improved route slots.
Coverings, such as horizontal/Venetian blinds and other similar blinds, typically include a headrail, a bottom rail, and a plurality of horizontally oriented slats configured to be supported between the headrail and the bottom rail via two or more sets of cord ladders. Additionally, one or more lift cords typically extend between the headrail and the bottom rail for adjusting the position of the bottom rail relative to the headrail, with each lift cord typically passing through a set of aligned route holes defined in the slats. As is generally understood, conventional route holes correspond to elongated through-hole having a substantially rectangular shape with generally rounded-offends.
Unfortunately, given their shape and typical dimensions, conventional route holes generally allow for a significant amount of light to pass through a blind when the slats have been tilted to their fully closed position. As such, the light-blocking functionality of the blind may be hindered. Additionally, the light gaps defined between the lift cord and the outer perimeter of conventional route holes often allow for a view through the blind when the blind is closed, thereby creating privacy concerns for homeowners with such blinds.
Moreover, to meet consumer demands related to the amount of privacy and light control provided by a Venetian blind when in the closed position, it is desirable for the slats to be capable of being tilted as close as possible to a vertical orientation. In this regard, both the diameter of the lift cord and the thickness of the slat impact the required dimensions of conventional route holes to accommodate the desired tilt angle. Specifically, the greater the thickness of the slat and/or the greater the cord diameter, the longer the route hole generally must be to achieve the desired tilt angle for the slats. As a result, designers of conventional Venetian blinds must balance the desire for having sturdier, thicker slats with the reduction in privacy and light control resulting from the accompanying increase in the length of the associated route holes.
Accordingly, an improved route hole configuration for slats that addresses one or more of the issues associated with conventional route holes would be welcomed in the technology.
Aspects and advantages of the present subject matter will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the present subject matter.
In various aspects, the present subject matter is directed to a slat configured for use with a covering for an architectural structure that includes an improved route hole configuration. Specifically, in several embodiments, the slat includes a route slot having a through-hole for passing a cord between the opposed outer faces of a slat body of the slat. Additionally, the route slot includes one or more recessed areas or recesses defined relative to the outer faces of the slat body that extend outwardly from and/or surround the through-hole to accommodate the cord at its maximum tilt angle when the slat is moved to a closed position. By configuring the disclosed route slot in this manner, the dimensions of the through-hole can be significantly reduced as compared to conventional route or through holes that allow for the same maximum tilt angle for the slat, thereby increasing light control and privacy for the associated covering.
Additionally, in various aspects, the present subject matter is also directed to a covering for an architectural structure that incorporates slats having an improved route hole configuration. For example, in one embodiment, the covering includes a headrail, a bottom rail, and a plurality of slats supported between the headrail and bottom rail. In such an embodiment, each slat may include one or more route slots configured in accordance with the disclosure provided herein.
These and other features, aspects, and advantages of the present subject matter will become better understood with reference to the following Detailed Description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present subject matter and, together with the description, serve to explain the principles of the present subject matter.
This Brief Description is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Brief Description is not intended to identify key features or essential features of the claimed subject matter, nor is it intended as an aid in determining the scope of the claimed subject matter.
A full and enabling disclosure of the present subject matter, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
In general, the present subject matter is directed to a slat configured for use with a covering for an architectural feature or structure (referred to herein simply as an architectural “structure” for the sake of convenience and without intent to limit). Specifically, in several embodiments, a route slot is defined in the slat that includes a through-hole through which an associated cord of the covering (e.g. a lift cord) passes. As will be described below, given the configuration of the disclosed route slot, the dimensions of the through-hole may be significantly reduced as compared to conventional route or through holes without negatively impacting the maximum tilt angle for the slat. For instance, in one embodiment, in addition to the through-hole, the route slot may also include one or more recessed areas or recesses defined relative to outer faces of the slat that extend outwardly from and/or surround the through-hole to accommodate the cord at its maximum tilt angle. As such, by installing slats having the disclosed route slots formed therein within a covering, the slats may provide increased light control and improved privacy for the covering when the slats are tilted to their closed position.
In one embodiment, each slat includes a slat body defining first and second faces along opposed sides of the slat body. Each face of the slat body extends in a longitudinal direction of the slat between a first lateral end and a second lateral end of the slat body and in a crosswise direction of the slat between a first edge and a second edge of the slat body. In addition, the slat body extends in a thickness direction of the slat between the opposed sides of the slat body such that the slat body defines a thickness directly between its first and second faces.
Additionally, in one embodiment, the route slot is defined by a recessed route wall positioned relative to each of the first and second faces of the slat body such that the route slot is defined between the first and second faces of the slat body and extends through the slat body to accommodate passage of a cord of a covering therethrough. For example, in one embodiment, the route wall extends radially from an outer end defining an outer perimeter of the route slot to an opposed inner end, with the inner end being recessed relative to the outer faces of the slat body. In such an embodiment, the through-hole of the route slot is defined by the inner, recessed end of the route wall to provide an opening to allow the cord of the associated covering to pass through the slat body. For example, in one embodiment, the inner end of the route wall may be recessed relative to the outer faces of the slat body such that the through-hole is defined at the actual or apparent center of the thickness of the slat. Moreover, in one embodiment, outer surfaces of the portions of the recessed route wall extending radially outwardly from the through-hole may at least partially define recessed areas or recesses of the route slot that at least partially surround the through-hole. In such an embodiment, when the slat is tilted to its closed position, the cord may extend through at least a portion of the recesses defined between the outer surfaces of the recessed route wall and the outer faces of the slat body to allow the route slot to accommodate the cord with the slat body orientated at its maximum tilt angle.
By configuring the disclosed route slot as described above, the required dimensions of the through-hole may be controlled primarily by the diameter of the cord passing therethrough (as opposed to both the cord diameter and the thickness of the slat). Specifically, in one embodiment, the dimension of the through-hole in the longitudinal direction of the slat need only be large enough to accommodate the diameter of the cord while the dimension of the through-hole in the crosswise direction of the slat need only be large enough to allow the lift cord to extend through the through-hole at the desired maximum tilt angle for the slat. In such an embodiment, the cross-wise dimension of the through-hole may be minimized, at least in part, due to the remainder of the route slot (e.g., the recessed portions of the route slot defined by the portions of the recessed route wall extending radially outwardly from the through-hole) being configured to accommodate portions of the cord as it extends through the route slot (as opposed to the cord being accommodated solely by a through-hole for conventional designs). For example, as will be described below, the remainder of the route slot may be shaped or sized to provide the necessary cord clearance for achieving the desired maximum tilt angle. Thus, as compared to conventional route holes that require significantly elongated through-holes to allow the same or a similar maximum tilt angle to be achieved, the through-hole dimensions can be significantly decreased in a manner that reduces both the amount of light transmitted through the route slot and the ability to “see-through” the slats (i.e., privacy).
In one embodiment, the recessed route wall defining the disclosed route slot is formed by a portion of the slat body of the associated slat. For instance, the route wall may correspond to an integral portion of the slat body extending radially within the route slot between the opposed outer faces of the slat body. Alternatively, the route wall may be defined by a separate component of the slat. For example, in one embodiment, the route wall is defined by a separate insert configured to be installed relative to the slat body (e.g., within an insert opening defined through the slat body).
Additionally, in one embodiment, the route wall extends radially inwardly relative to the outer perimeter of the route slot between the opposed outer faces of the slat body such that the route wall at least partially divides the route slot into separate slot portions or recesses connected to each other via the through-hole of the route slot. For example, in one embodiment, the route slot may include a first slot portion or recess extending in the thickness direction of the slat between the first face of the slat body and the through-hole, and a second slot portion or recess extending in the thickness direction of the slat between the second face of the slat body and the through-hole. In such an embodiment, the route wall may extend radially between the first and second recesses such that the first recess is spaced apart from the second recess in the thickness direction of the slat between the radially inner and outer ends of the route wall.
Moreover, in one embodiment, the route wall defines a tapered profile that tapers down and into the through-hole of the route slot. Specifically, in one example, the route wall defines a tapered profile between the first and second recesses of the route slot such that a depth of each recess into the slat increases as the thickness of the route wall decreases as the wall extends radially inwardly in the direction of the through-hole. For example, the route wall may include sloped outer surfaces extending inwardly between the outer faces of the slat body and the through-hole such that the route wall tapers down from the outer faces of the slat body to the perimeter of the through-hole. In such an embodiment, a taper angle of the sloped outer surfaces may be greater than or equal to the desired maximum tilt angle for the slat to ensure that the route slot provides sufficient cord clearance for achieving such tilt angle.
Further, in one embodiment, a slat configured for use with a covering for an architectural structure includes a slat body having opposed first and second faces extending in a longitudinal direction between first and second lateral ends of the slat body and in a crosswise direction between first and second edges of the slat body. The first and second faces are spaced apart from each other in a thickness direction of the slat body. Additionally, in one embodiment, the slat includes a route wall at least partially recessed relative to at least one of the first face or the second face in the thickness direction of the slat body such that the route wall defines a route slot including at least one recess formed along the first face and/or the second face of the slat body. Moreover, in one embodiment, the route slot further includes a through-hole defined by the route wall that extends between the first and second faces of the slat body for passing a cord through the slat body. In such an embodiment, the recess of the route slot is enlarged relative to the through-hole of the route slot in at least one direction of the slat body such that the recess at least partially surrounds the through-hole.
By configuring the route wall to define a route slot including a recess that surrounds or is otherwise enlarged relative to the associated through-hole of the route slot, the recess can be configured to accommodate portions of the cord passing through the route slot when the slat is tilted, thereby allowing for the relative dimension(s) of the through-hole to be reduced without negatively impacting the maximum tilt angle for the slat. For example, in one embodiment, a portion of the recess extending outwardly from the perimeter of the through-hole (e.g., in a direction parallel to the central slat plane of the slat) may be configured to define a recessed cord path along the outer face of the slat body for receiving a portion of the cord when the slat is tilted to its maximum tilt angle. In such an embodiment, the recessed cord path defined by the enlarged recess facilitates tilting of the slat to the maximum tilt angle so that the corresponding dimension(s) of the through-hole can be reduced.
In one embodiment, the recess extends to an outer perimeter of the route slot and an inner end of the recessed route wall defines a through-hole perimeter of the through-hole. In such an embodiment, the recess may be enlarged relative to the through-hole such that a dimension of the outer perimeter of the route slot in at least one of the longitudinal direction or the cross-wise direction of the slat body is greater than a corresponding dimension of the perimeter of the through-hole in the at least one the longitudinal direction or the crosswise direction. For example, in one embodiment, the recess defines a slot length in the crosswise direction of the slat body that is greater than a corresponding through-hole length of the through-hole defined in the crosswise direction of the slat body. In such an embodiment, the portion(s) of the recess that is enlarged relative to the through-hole in the crosswise direction of the slat body may define a recessed cord path for receiving a corresponding portion of the cord when the slat is tilted.
As indicated above, in several embodiments, slats having the improved route hole configuration may be incorporated into a covering for an architectural structure. For example, in one embodiment, the covering includes a headrail, a bottom rail spaced apart from the headrail, and a lift cord extending between the headrail and the bottom rail. In addition, the covering includes a plurality of slats supported between the headrail and the bottom rail via one or more cord ladders, with each slat including a route slot configured in accordance with one or more aspects of the present subject matter. As such, the lift cord may pass through the aligned route slots of the slats as it extends between the headrail and the bottom rail.
Moreover, the present subject matter is also directed to a method for manufacturing slats having an improved route hole configuration. For example, in one embodiment, the method includes positioning a slat body of a slat relative to a slot-forming component and moving the slot-forming component relative to the slat body to form a route slot therein. In such an embodiment, the route slot formed within the slat body is configured in accordance with description provided herein.
In one embodiment, the slot-forming component corresponds to a die assembly including an upper die and a lower die. In such an embodiment, a portion of the slat body is configured to be compressed between the upper and lower dies to form the route slot within the slat body, with the slat material compressed between the upper and lower dies forming the recessed route wall described herein. Additionally, in one embodiment, the die assembly includes a punch configured to punch-through the slat body to form the through-hole of the route slot. In such an embodiment, the punch may be movable relative to the upper and/or lower dies or may be fixed relative to the upper and/or lower dies (e.g., by forming the punch integrally with one of the dies or by rigidly coupling the punch to one of the dies). In one embodiment, when the punch is movable relative to the upper and/or lower dies, the die assembly is configured to perform a two-stage embossing punch process in which the upper and lower dies initially compress the slat body at the desired location of the route slot prior to the punch being actuated relative to the dies to punch-out the through-hole of the route slot. Moreover, in one embodiment, when the punch is fixed relative to the upper and/or lower die, the die assembly is configured to perform a single-stage embossing punch press in which the punch is used to punch-out the through-hole as the slat material is being compressed between the upper and lower dies at the desired location of the route slot.
Further, in one embodiment, the slot-forming component corresponds to one or more cutting devices (e.g., one or more saws) configured to remove material from the slat body to form the route slot. In such an embodiment, the cutting device(s) is used to make first and second cuts along the opposed outer faces of the slat to form the first and second slot portions or recesses of the route slot. For example, each cut may be used to actively form a recess on each side of the slot, with the cuts being made along opposed sides of the slat. In one embodiment, the cuts made by the cutting device(s) overlap each other such that the through-hole of the route slot is formed via the cuts made to the opposing sides of the slat. Alternatively, the cuts made by the cutting devices may be non-overlapping such that a portion of the slat body remains at the desired location of the through-hole following the cuts. In such an embodiment, a secondary operation (e.g., a secondary punch operation) may be used to remove the remaining slat material and, thus, form the through-hole.
Additionally, in one embodiment, the manufacturing method used to form the disclosed route slot may vary or be selected depending on the slat material. For instance, malleable materials, such as plastic materials, are often better suited for being compressed via a die assembly than non-malleable materials, such as wood and other rigid materials (including coating materials applied to the exterior of slats). Specifically, non-malleable materials may often crack, chip, splinter, etc. under compression, thereby leading to an undesirable appearance or finish for the formed route slot. Similarly, when using cutting device(s), materials with relatively low melting or plastic temperatures, such as plastics or other polymer materials, may tend to heat up during the cutting process and melt at the interface between the slat and the cutting device(s), thereby resulting in undesirable material accumulation along the formed route slot (e.g., often along the exit side of the cutting device(s) or requiring modifications to be made to the cutting process. Thus, in one embodiment, for a faux wood slat (e.g., a slat formed from polyvinyl chloride (PVC), polystyrene (PS), or any other suitable plastic material), it may be desirable to compress the slat material via the die assembly to form the route slot therein. Similarly, in one embodiment, for a wood slat, it may be desirable to remove material from the slat to form the route slot (e.g., using saws or other cutting devices).
Moreover, the present subject matter is also directed to a cord threading tool configured for threading a cord (e.g., a lift cord) through aligned route slots/holes of a plurality of stack slats. In one embodiment, the tool includes an arm configured to be inserted through the aligned route slots/holes and a retention structure configured to allow the cord to be coupled to the arm. Additionally, in one embodiment, the tool includes a nesting structure configured to allow a portion(s) of the cord to the nested relative to a portion(s) of the tool arm as the arm is being pulled through the aligned route slots/holes, thereby allowing the cross-sectional profile of the tool/cord assembly to be minimized or reduced. Such a reduced cross-sectional profile may, in turn, allow for the tool to be effectively and efficiently used to thread a cord through route holes/slots having through-holes with reduced dimensions, such as within the route slot disclosed herein. Moreover, the reduced cross-sectional profile may also reduce the amount of force required to pull the tool/cord assembly through the aligned route holes/slots, thereby reducing operator effort during the assembly process.
Additionally, in one embodiment, at least a portion of the retention structure of the tool may have an angled orientation to facilitate or assist the cord being received within the nesting structure of the tool. For instance, a portion of the retention structure may define an angled cord path through the arm for directing the cord towards associated cord cradles of the nesting structure defined along opposed sides of the arm.
Referring now to
In general, the covering 20 may be configured to be installed relative to a window, door, or any other suitable architectural structure as may be desired. In one embodiment, the covering 20 may be configured to be mounted relative to an architectural structure to allow the covering 20 to be suspended or supported relative to the architectural structure. It should be understood that the covering 20 is not limited in its particular use as a window or door shade, and may be used in any application as a covering, partition, shade, and/or the like, relative to and/or within any type of architectural structure.
In several embodiments, the covering 20 may be configured as a Venetian-blind-type extendable/retractable covering. For example, in the embodiment shown in
In the embodiment of
Moreover, in accordance with aspects of the present subject matter, one or more route slots 100 are defined in the slat body 44 for passing an associated lift cord 28 of the covering 20 through each slat 40. For instance, as shown in the illustrated embodiment, each slat 40 includes two route slots 100 defined in its slat body 44. However, in other embodiments, each slat 40 may include any other suitable number of route slots 100 depending on the number of lift cords 28 of the associated covering 10. As shown in
Referring particularly to
Referring now to
In general, the disclosed route slot 100 is configured in a manner that enhances the light control and privacy for the slat 40 while still allowing the slat 40 to be moved to its fully closed position. Specifically, in several embodiments the route slot 100 corresponds to a channel or recessed feature defined relative to the outer faces 58, 60 of the slat body 44, with the route slot 100 including a centrally-located, reduced-size through-hole 102 through which one of the lift cords 28 of the associated covering 10 passes. As will be described below, by configuring the disclosed route slot 100 in the manner described herein, the required dimensions of the through-hole 102 may be controlled primarily by the diameter of the lift cord 28 (as opposed to both the lift cord diameter and the thickness 64 of the slat 40), thereby allowing the through-hole dimensions to be significantly reduced. Specifically, in several embodiments, the dimension of the through-hole 102 in the longitudinal direction L of the slat 40 need only be large enough to accommodate the diameter of the lift cord 28 while the dimension of the through-hole 102 in the crosswise direction CW of the slat 40 need only be large enough to allow the lift cord 28 to extend through the through-hole 102 at the desired maximum tilt angle 42 for the slat 40 (while taking into account, if necessary, a thickness dimension 119 (
In several embodiments, the route slot 100, including the associated through-hole 102, may be defined by a route wall 104 that is recessed relative to the outer faces 58, 60 of the slat body 44. For example, as shown in
It should be appreciated that, as used herein, the radial direction generally refers to any direction extending outwardly from a center of the through-hole 102 (e.g., indicated by dot 115 in
In several embodiments, the recessed route wall 104 may be formed by a portion of the slat body 44. For example, as will be described later herein, the slat body 44 may be pressed, punched, machined and/or otherwise processed to form the route slot 100 within the slat body 44, with the route wall 104 corresponding to the remaining portion of the slat body 44 extending radially within the perimeter of the route slot 100. As such, in one embodiment, the route wall 104 may correspond to an integral section of the slat body 44 that remains following the formation of the route slot 100. However, in other embodiments, the route wall 104 may be formed by a separate component that is separately installed relative to the slat body 44. For instance, as will be described below with reference to
It should be appreciated that, with the configuration shown in the illustrated embodiment, the recessed route wall 104 may function as a light-blocking element by partially dividing or separating the route slot 100 into a first slot portion or recess 110 (
As indicated above, the specific dimensions of the through-hole 102, along with the overall dimensions of the route slot 100, may generally be selected based on the diameter of the associated lift cord 28 so as to minimize light transmission through the route slot 100 while allowing the slat 40 to be tilted to its desired maximum tilt angle 42. Specifically, in several embodiments, the dimension of the through-hole 102 in the longitudinal direction L of the slat 40 may be selected so as to correspond to the minimum dimension (or approximately the minimum dimension) required to allow the lift cord 28 to be received within the through-hole 102. For instance, as particularly shown in
As particularly shown in
Moreover, as shown in
Additionally, in several embodiments, the crosswise dimensions of both the outer perimeter of the route slot 100 and the associated through-hole 102 may be selected to correspond to the minimum dimensions (or approximately the minimum dimensions) required to allow the slat 40 to be tilted to the desired maximum tilt angle 42. For example, as shown in
It should be appreciated that, in one embodiment, the through-hole length 118 of the through-hole 102 in the cross-wise direction CW may be selected based on both the cord diameter of the lift cord 28 and a thickness dimension 119 (
It should also be appreciated that, in several embodiments, the cross-sectional area of each recess 110, 112 defined along a plane extending parallel to the central slat plane 62 of the slat body 44 may be greater than the cross-sectional area of the through-hole 102 defined along the same plane. For instance, as shown in
Moreover, the configuration of the route slot 100 in the thickness direction T may also be selected to allow the slat 40 to be moved to the closed position as the lift cord 28 extends through the route slot 100, thereby allowing for the desired light control and privacy. Specifically, in several embodiments, the dimensions of the route slot 100 in the thickness direction T of the slat 40 may be selected to provide the necessary cord clearance for achieving the desired maximum tilt angle 42 for the slat 40. For example, in one embodiment, the first and second slots portions 110, 112 of the route slot 100 may define, at the very least, a minimum depth profile along the crosswise direction CW of the slat 40 to allow the lift cord 28 to be oriented within the route slot 100 at the desired maximum tilt angle 42 of the slat 40. For instance, as shown in
In several embodiments, to provide the illustrated depth profile for the route slot 100 shown in
For instance,
Moreover, in other embodiments, the route slot 100 may be configured to define any other suitable depth profile along the crosswise direction CW of the slat 40 that provides sufficient cord clearance for passing the lift cord 28 through the route slot 100 when the slat 40 is oriented at the desired maximum tilt angle 42 relative to the cord 28. For instance,
As indicated above, the disclosed route slot may generally be formed within the slat body 44 of a given slat 40 using any suitable manufacturing technique or process known in the art. Specifically, in several embodiments, a manufacturing technique(s) may be used that relies on separate portions of the disclosed route slot being formed using separate manufacturing components and/or via separate processing steps. For example, in one embodiment, the first and second recesses 110, 112 of the route slot 100 may be formed via a die assembly (e.g., by compressing slat material to form the recessed route wall 104) prior to or simultaneously with a punch being used to form the through-hole 102. In another embodiment, separate cuts may be made along each side of the slat 40 to separately form the first and second recesses 110, 112 of the route slot 100. In such an embodiment, each cut may, for example, also form a portion of the through-hole 102 or a separate process may be utilized to form the through-hole 102 following the formation of each recess 110, 112 along each side of the slat 40.
For instance,
As shown in
Additionally, as shown in
By forming the route slot 100 using the above-described die assembly 240, the dies 242, 244 may be used to compress the slat material and hold the slat body 44 in advance of the through-hole punch. As such, when the punch 246 is subsequently actuated relative to the embossing dies 242, 244 to form the through-hole 102, the surrounding slat material may be clamped in place, thereby preventing material spring-back during the punching stage. Additionally, as indicated above, the two-stage embossing punch process may be implemented via a single stroke of the actuator (not shown) configured to actuate or otherwise move the movable components of the die assembly 240. For example, a suitable fixture may be designed that allows the actuation of the punch 246 to be delayed until the upper and lower dies 242, 244 have been compressed together to perform the initial embossing stage of the process. Thereafter, the remainder of the stroke of the actuator may be used to actuate the punch 246 relative to the dies 242, 244 to perform the punching stage of the process and complete the formation of the route slot 100.
It should be appreciated that, as an alternative to the two-stage embossing punch process described above, the disclosed route slots may be formed using a single-stage embossing punch process. For example,
As opposed to a punching process, the disclosed route slot may be formed using any suitable machining process that allows material to be removed from the slat body 44. For instance, in several embodiments, each side 54, 56 of the slat body 44 may be machined using one or more cutting devices (e.g., one or more saws, such as one or more rotary saws) configured to remove material from the slat body 44 to form the route slot. In such embodiments, the depths of the cuts made by the cutting device(s) along each side 54, 56 of the slat body 44 may be selected such that the through-hole of the disclosed route slot is formed directly by the cuts or via a subsequent secondary operation. For example,
Alternatively,
It should be appreciated that, when the route slot 100 is formed using one of the above-described machine cutting processes, the first and second recesses 110, 112 of the route slot 100 may define non-linear depth profiles as each recess 110, 112 extends in the crosswise direction CW of the slat 40 between the outer perimeter of the route slot 100 and the associated through-hole 102. For instance, as shown in
Additionally, it should be appreciated that, as an alternative to the manufacturing methods described above, any other suitable manufacturing method or process may be used to form the disclosed route slot within a slat. It should also be appreciated that, as indicated above, the specific manufacturing method used to form the disclosed route slots may be varied or selected based on the material of the slats being processed. For instance, malleable materials, such as plastic materials, are often better suited for being compressed via a die assembly than non-malleable materials, such as wood and other rigid materials (including coating materials applied to the exterior of slats). Similarly, when using cutting device(s), materials with relatively low melting or plastic temperatures, such as plastics or other polymer materials, may tend to heat up during the cutting process and melt at the interface between the slat and the cutting device(s), thereby resulting in undesirable material accumulation along the formed route slot (e.g., often along the exit side of the cutting device(s)). Thus, in one embodiment, for a faux wood slat (e.g., a slat formed from polyvinyl chloride (PVC), polystyrene (PS), or any other suitable plastic material), it may be desirable to utilize one of the embossing punch processes to form the route slot therein. Similarly, in one embodiment, for a wood slat, it may be desirable to remove material from the slat to form the route slot (e.g., using saws or other cutting devices).
However, in other embodiments, a given manufacturing technique may be used to form the disclosed route slots regardless of the material used to form the slats. For instance, when forming a route slot using the cutting process described above in which separate saw cuts are made along each side of the slat, the saws may be rotated in reverse relative to their intended rotational direction such that each saw blade has a reverse or negative rake as it is passed through the slat material. Such reverse rotation of the saws has, for example, has been found to provide acceptable results across a wide range of slat materials, including both plastic materials and wood. It should be appreciated that, as an alternative to reversing the rotation of conventional positive rake saw blades, the disclosed cutting process may, instead, be implemented using saw blades intentionally designed to have a negative rake.
Moreover, in yet another embodiment of the present subject matter, the disclosed route slot may be formed at least partially by a separate insert configured to be installed relative to the associated slot. For example,
As shown, to accommodate the insert 580, an elongated opening 582 (
Additionally, as shown in the illustrated embodiment, the insert 580 may generally have any suitable configuration that allows it to be installed relative to the slat body 44 such that, when the insert 580 is received within the elongated opening 582, the insert 580 (either alone or in combination with the portion of the slat body 44 forming the opening 582) defines a recessed route slut 100 (
Moreover, as shown in
As indicated above, the present subject matter is also directed to a cord-threading tool for inserting a cord through a route hole or slot defined in a slat. Specifically, in several embodiments, the tool may include an elongated insertion member configured to be inserted through aligned route holes/slots of a plurality of stacked slats. Additionally, a cord retention structure may be defined in or otherwise provided in operative association with the insertion member for coupling the cord to the insertion member. For instance, in one embodiment, an opening, slot, and/or other suitable retention feature may be defined at or adjacent to a tip end of the insertion member for coupling the cord to the insertion member. By coupling the cord to the insertion member, the member may be pulled through the aligned route holes/slots to thread the cord through the stacked slats. For instance, in one embodiment, the insertion member may be initially inserted through the aligned route holes/slots at one side of the stacked slats until the associated retention structure is accessible along the opposed side of the stacked slats. Once the cord is coupled to the insertion member (e.g., via the retention structure), the insertion member may then be pulled back through the aligned route holes/slots to thread the cord through the slats.
Moreover, in several embodiments, the tool may also include a nesting structure positioned at or adjacent to the cord retention feature and/or at or adjacent to the tip end of the insertion member to allow portions of the cord to be nested within or otherwise recessed relative to portions of the outer faces of the insertion member. As such, when the cord is coupled to the insertion member and the member is being pulled through the aligned route holes/slots, the portions of the cord extending adjacent to the outer faces of the insertion member may be received within the nesting structure to minimize the cross-sectional profile of the tool/cord assembly within the aligned route holes/slots. Such a minimized cross-sectional profile may, in turn, allow for the tool to be effectively and efficiently used to thread a cord through route holes/slots having through-holes with reduced dimensions, such as within route slots as disclosed herein. Moreover, the minimized cross-sectional profile may also reduce the amount of force required to pull the tool/cord assembly through the aligned route holes/slots, thereby reducing operator effort during the assembly process.
Referring now to
In general, the tool 601 includes an elongated insertion member configured to be inserted through aligned route slots/holes of a plurality of stacked slats. For instance, as shown in the illustrated embodiment, the tool 601 includes an insertion arm 603 extending in a lengthwise direction (e.g., as indicated by arrow 605 in
As particularly shown in
Additionally, in several embodiments, the tool 601 may also include a cord retention structure positioned at or adjacent to the tip end 607 of the insertion arm 603 for coupling a cord to the arm 603. For instance, as particularly shown in
As particularly shown in
It should be appreciated that, in other embodiments, the retention structure may correspond to any other suitable structure configured to allow the cord to be coupled to the arm 603, including any suitable channel, opening, slot, notch, and/or any other retention feature.
As indicated above, the tool 601 may also include a nesting structure for nesting a portion of the cord relative to an adjacent portion of the arm 603 as the arm/cord are being pulled through the aligned route slots/holes of the corresponding stack of slats. Specifically, in several embodiments, the nesting structure may allow portions of the cord to be brought closer to a central plane of the arm 603 in order to reduce the cross-sectional profile of the tool/cord. For example, the nesting structure may allow portions of the cord to be nested relative to the opposed outer faces 613, 615 of the insertion arm 603 along all or a portion of the section of the arm 603 across which the cord extends as the arm 603 is being pulled through the aligned route slots/holes (e.g., the portion of the arm 603 defined between the retention structure 625 and the tip end 607 of the arm 603). Thus, the cross-sectional profile of the tool/cord across such section of the arm 603 may be reduced or otherwise minimized in the thickness direction 637 of the arm 603, thereby allowing the cord threading tool 601 to be used in applications including route slots/holes having reduced size or smaller through-holes.
As particularly shown in
It should be appreciated that, in one embodiment, the lowest points of the opposed valleys 649, 651 defined by the nesting section 643 may generally be aligned along a plane 669 extending in the cross-wise direction 617 through at least a portion of the arm 603. As a result, when the cord portions 653, 655 are received within the cord cradles 639, 641, a portion of each cord portion cord portion 653, 655 may be generally aligned within and/or positioned adjacent to the plane 669. In one embodiment, the plane 669 may generally correspond to a central plane of the arm 603 that extends through the center of the arm in the thickness direction 637.
It should also be appreciated that the angled orientation of the slot 629 of the retention channel 625 may assist each cord portion 653, 655 in being received within its corresponding cord cradle 639, 641. For example, as shown in
As shown in
One embodiment of a cord-threading process using the tool 601 described above with reference to
While the foregoing Detailed Description and drawings represent various embodiments, it will be understood that various additions, modifications, and substitutions may be made therein without departing from the spirit and scope of the present subject matter. Each example is provided by way of explanation without intent to limit the broad concepts of the present subject matter. In particular, it will be clear to those skilled in the art that principles of the present disclosure may be embodied in other forms, structures, arrangements, proportions, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present subject matter covers such modifications and variations as come within the scope of the appended claims and their equivalents. One skilled in the art will appreciate that the disclosure may be used with many modifications of structure, arrangement, proportions, materials, and components and otherwise, used in the practice of the disclosure, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present subject matter. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of elements may be reversed or otherwise varied, the size or dimensions of the elements may be varied. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the present subject matter being indicated by the appended claims, and not limited to the foregoing description.
In the foregoing Detailed Description, it will be appreciated that the phrases “at least one”, “one or more”, and “and/or”, as used herein, are open-ended expressions that are both conjunctive and disjunctive in operation. The term “a” or “an” element, as used herein, refers to one or more of that element. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, longitudinal, front, rear, top, bottom, above, below, vertical, horizontal, cross-wise, radial, axial, clockwise, counterclockwise, and/or the like) are only used for identification purposes to aid the reader's understanding of the present subject matter, and/or serve to distinguish regions of the associated elements from one another, and do not limit the associated element, particularly as to the position, orientation, or use of the present subject matter. Connection references (e.g., attached, coupled, connected, joined, secured, mounted and/or the like) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. Identification references (e.g., primary, secondary, first, second, third, fourth, etc.) are not intended to connote importance or priority, but are used to distinguish one feature from another.
All apparatuses and methods disclosed herein are examples of apparatuses and/or methods implemented in accordance with one or more principles of the present subject matter. These examples are not the only way to implement these principles but are merely examples. Thus, references to elements or structures or features in the drawings must be appreciated as references to examples of embodiments of the present subject matter, and should not be understood as limiting the disclosure to the specific elements, structures, or features illustrated. Other examples of manners of implementing the disclosed principles will occur to a person of ordinary skill in the art upon reading this disclosure.
This written description uses examples to disclose the present subject matter, including the best mode, and also to enable any person skilled in the art to practice the present subject matter, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the present subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The following claims are hereby incorporated into this Detailed Description by this reference, with each claim standing on its own as a separate embodiment of the present disclosure. In the claims, the term “comprises/comprising” does not exclude the presence of other elements or steps. Furthermore, although individually listed, a plurality of means, elements or method steps may be implemented by, e.g., a single unit or processor. Additionally, although individual features may be included in different claims, these may possibly advantageously be combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. In addition, singular references do not exclude a plurality. The terms “a”, “an”, “first”, “second”, etc., do not preclude a plurality. Reference signs in the claims are provided merely as a clarifying example and shall not be construed as limiting the scope of the claims in any way.
This application is based upon and claims the right of priority to U.S. Provisional Patent Application No. 62/532,440, filed Jul. 14, 2017, the disclosure of which is hereby incorporated by reference herein in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62532440 | Jul 2017 | US |