The invention concerns a slatted frame for a reclining or seating furniture article, and a zone element for a slatted frame.
Slatted frames with zone elements arranged thereon, of the above-indicated kind, are known for example from EP 0923331 B1. However, they suffer from considerable disadvantages in regard to mounting of the individual zone elements. In the state of the art, mounting of the zone elements is effected by a mechanical connection between the frame and the zone elements. That is implemented, for example, by bars which can be moved in a corresponding opening along the longitudinal direction thereof, and thus enable a certain freedom of movement between the frame and the zone element. That freedom of movement is used for adaptation to the body of a user of the slatted frame. Nonetheless, the following disadvantages arise in the case of the slatted frame shown in the state of the art:
DE 29 902 965 U1 shows a support element which is either incorporated in a mattress or fixed to a bottom bed frame. The support element has rotary bearings for adaptation to the human body. Transverse slats are fixed in end cap elements. In the situation involving fixing to the bottom bed frame there is only inadequate flexibility for the user.
Therefore, the object of the invention is to provide a slatted frame which is improved over the state of the art, and a zone element which is improved over the state of the art.
If there is at least one elastic transverse bracing means, wherein the zone elemets are connected by way of at least one transverse bracing means to a longitudinal side of the frame, it is not necessary to use a complicated mechanical connection which is susceptible to failure and which also gives rise to noise between the zone elements and the frame. The use of the transverse bracing means and longitudinal bracing means means that it is possible for the zone elements to be mounted and braced moveably in the frame, whereby the zone elements are mounted in hanging relationship on or in the frame by the at least one elastic transverse bracing means and the at least one elastic longitudinal bracing means in spaced relationship with the frame and the mobility of the at least two zone elements is adjustable and can be limited by the carrier means. This design therefore does not involve an indirect contact between the zone elements and the frame. By virtue of the elastic transverse bracing means and the longitudinal bracing means sufficient freedom of movement for the zone elements is afforded to be able to adapt to the body of the user. If the zone elements are to be less flexible the carrier means is stressed more greatly. If further adjustment of the zone elements is to occur then the carrier means can be correspondingly less greatly stressed.
If at least two elastic longitudinal bracing means are arranged between each of the at least two zone elements, wherein the at least two zone elements connected together in that way are connected by at least two further longitudinal bracing means to the two opposite transverse sides of the frame, that affords a more stable suspension for the zone elements on the frame. The forces can be better distributed to a plurality of longitudinal bracing means and transverse bracing means. In that situation, the longitudinal bracing means are arranged in mutually spaced and parallel relationship along the longitudinal extent of the frame or in other words: parallel to the longitudinal sides of the frame. The transverse bracing means respectively brace the zone elements on both sides in the direction of the transverse extent.
If the longitudinal bracing means and the transverse bracing means are formed by encased rubber cables and/or spring elements which are connected to the frame and/or a zone element by way of at least one fixing means that affords flexible, stable and long-lasting bracing of the zone elements in the frame. The encasing around the rubber cables prevents damage to the rubber beneath it. In addition the encasing prevents the rubber stretching too far, in other words the encasing can also serve as an “end abutment” so that the zone elements cannot collide with the frame. It is also possible to provide a mix of spring elements, for example steel springs and rubber cables, on a slatted frame. The use either of rubber cables or spring elements is also possible. The transverse bracing and longitudinal bracing means are connected to the frame and/or the zone element by way of fixing elements—those fixing elements can be formed for example by screw eyes or other means. It would also be conceivable that the longitudinal bracing means and the transverse bracing means simply form at the ends thimbles or eyes which are directly or indirectly connected as fixing means to the zone element and/or the frame.
If each zone element is formed by at least two opposite carrier elements, wherein the carrier elements are connected together by a bar, that provides a light, compact and stable zone element. In addition, in the case of damage, for example to a carrier element or also a bar, replacement of the components is simple. It is not necessary to change the entire zone element. In addition it is possible, for example in relation to slatted frames of differing widths, to use the same carrier element and only to produce a suitably longer or shorter bar for adaptation to the width of the slatted frame.
If each zone element has at least one mounting element for receiving the at least one transverse bracing means and/or the at least one longitudinal bracing means then the engagement point or abutment point of the longitudinal and transverse bracing means can be implemented in defined fashion on the zone element. In that case the at least one mounting element can be arranged on the at least one bar. It is also possible for only the transverse bracing means to engage the mounting element, while the longitudinal bracing means are attached directly to the at least one bar and/or to the carrier element.
If each of the two zone elements has at least one, preferably elastic, connecting element for receiving the at least one slat that can achieve additional flexibility for the user. Not only is each of the individual zone elements mounted moveably in the frame, but also the slat disposed on the zone element. The slat itself is per se also flexible or resilient, which additionally enhances the comfort of the slatted frame.
If a transverse spacing and a longitudinal spacing can be produced between the at least two zone elements and the frame by the bracing of the at least two zone elements in the frame, whereby indirect contact between the frame and the at least two zone elements is prevented, noise production, tilting of the zone elements on a mechanical guide and wear are prevented. In addition the arrangement prevents the user when using the slatted frame from feeling uncomfortable and prevents hard abutment of the zone elements against the frame in an end position as the zone elements cannot make any contact with the frame by virtue of of the spacings in relation thereto.
If the frame is formed by the two longitudinal sides which extend in parallel mutually opposite relationship along the longitudinal extent of the frame and are spaced from each other by two parallel mutually opposite transverse sides that produces an inexpensive and stable frame. It can additionally be even more reinforced by transverse strut means fitted between the two mutually parallel opposite transverse sides.
If a plurality of frame rolling bodies for receiving the at least one carrier means are arranged along the longitudinal side and along the longitudinal extent then mounting and adjustment of the zone elements can be implemented by way of the frame rolling bodies and the carrier means. In that arrangement the main mounting configuration can be afforded by the transverse and longitudinal bracing means. They define the position and location of the zone elements. The sink-in depth of the slatted frame and thus adaptability to the body of the user is adjusted by the carrier means. By virtue of the reduction in the tensioning at the carrier means a higher degree of flexibility is achieved at the zone elements whereby if necessary they can better adapt to the anatomical characteristics of the user. The carrier means acts so-to-speak as an additional mounting means and adjustment device for flexibility and adaptability of the zone elements on the slatted frame. It is preferably provided that at least one and preferably a respective zone element is arranged between two frame rolling bodies disposed on a longitudinal side. In the latter case a zone element is always arranged between two frame rolling bodies.
In an advantageous configuration of the invention at least one support rolling body for receiving the at least one carrier means is arranged on a longitudinal side, wherein the support rolling body is disposed in a region beneath the carrier element of a zone element between two zone rolling bodies. In that way, in the region in which a support rolling body is provided, that arrangement affords additional support for the respective zone element arranged thereabove, whereby a harder and more stable support for the user is afforded in that region of the slatted frame. Such support can be advantageous in particular in the region of the head, the shoulders and/or the loins. In that arrangement the support rolling body can be fixed on the longitudinal side of the frame.
If an adjusting element for adjusting the tension of the carrier means is arranged on the frame the user can then themselves adjust the flexibility and adaptability of the slatted frame. The adjusting element can be, for example, in the form of a coil, a cable clamp, an electric drive like for example a winch or also a linear motor. The adjusting element acts directly on the tension of the carrier means and thus on the flexibility and adaptability of the slatted frame and can be adjusted as desired by the user.
If the longitudinal bracing means and the transverse bracing means are of a resilient or elastic nature and the at least one carrier means is of a static configuration, preferably in the form of a static cable without elastic properties that affords a great degree of freedom for the zone elements by virtue of the elastic bracing means whereby that degree of freedom can be reduced by the static carrier means. The zone elements remain moveable under load by the user, but the mobility of the zone elements can be influenced by way of the static carrier means.
In a further aspect of the invention, a zone element is provided, and at least two zone rolling bodies are arranged for mounting the zone element on at least one carrier means along the longitudinal extent of each carrier element. Two contact points occur at each side of the zone element by virtue of the two zone rolling bodies. Excessive uncontrolled tipping of the zone element is prevented by virtue of those two contact support points. Accordingly, the zone element remains rotatable or tiltable about the transverse extent in an intended range, by virtue of the use of zone rolling bodies. As, however, they are spaced from each other, there is nonetheless a certain degree of inherent stability. There is no need to provide additional guidance, for example in the form of a bar or trunion, which engages into a corresponding counterpart portion. Stability is afforded by the at least two zone rolling bodies respectively disposed at each side, together with the longitudinal and transverse bracing means. The inherent stability is additionally enhanced by the carrier means.
If the at least two zone rolling bodies are arranged at the side of the carrier elements, that is remote from the bar, the spacing between the zone element and the frame can be increased. In addition, the contact with the frame rolling bodies disposed on the frame is simplified. Therefore, the zone rolling bodies and also the frame rolling bodies are in the same vertical plane and are connected together by the at least one carrier means.
If the at least two zone rolling bodies are respectively mounted at their own rotary axis parallel to a transverse extent of the zone rolling body, the two zone rolling bodies do not mutually influence each other. In addition, there is an axis spacing between the rotary axes of the at least two zone rolling bodies of at least 80 mm and at a maximum 220 mm, preferably at least 100 mm and at a maximum 200 mm, particularly preferably at least 120 mm and at a maximum 180 mm. The inherent stability of the zone element is enhanced by that spacing. If the rollers were to be closer together the zone elements would rather tend to tilt or sway.
The generation of noise in use of the slatted frame or zone element is also reduced by the at least two zone rolling bodies substantially comprising plastic rollers, wood rollers or metal rollers, wherein the rollers are mounted rotatably at at least one ball bearing. Direct mounting of rollers on a trunion could result in noise. In addition the ball bearings enhance the ease of operation in the movement of the zone elements and provide a maintenance-free system which for example does not have to be lubricated by lubricant or the like.
Further details and advantages of the present invention are described more fully hereinafter by the specific description with reference to the drawings, in which:
In addition deactivation of adaptability is possibly to be viewed as being advantageous to acquire a reference value. The user can therefore feel for his desired adaptability of the slatted frame 1 in a stepwise procedure, starting from a zero value (no adaptability) to a maximum level of adaptability.
Number | Date | Country | Kind |
---|---|---|---|
A 50639/2018 | Jul 2018 | AT | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/AT2019/060218 | Jul 2019 | US |
Child | 17154521 | US |