The present disclosure is directed to HVAC controllers, and in particular, to an improved HVAC thermostat that provides an altered temperature environment that enhances a person's sleep.
Heating, ventilation, and air conditioning (HVAC) systems are typically controlled by a thermostat mounted on a wall that enables occupants to set the desired temperature in the building. In summer months, the thermostat can be placed in a cooling mode to operate air conditioning equipment, while in the winter months the thermostat can be placed in a heating mode to operate an oil- or gas-fired furnace, an electric heater, or a heat pump. Many thermostats include an energy-saving scheduling function to enable automatic adjustments of temperature based on time-of-day, day-of-week, or even seasonally. Some thermostats include occupancy sensing functions that reduce system output during periods when no people are present in the building.
Increasingly, the stresses and habits of modern life negatively impact a person's sleep. People who heavily rely on cell phones exhibit an increase in sleep disorders and depressive symptoms. Habitual late night computer, smart phone, and tablet use is associated with sleep disorders, stress and depressive symptoms, and loss of efficiency during waking hours. Consequently, many people are increasingly unable to achieve the duration and quality of sleep that they need.
Some thermostats and HVACs include a nighttime “sleep” setback mode, which simply lowers (during winter) or raises (during summer) the setpoint temperature during sleeping hours to save energy. One drawback of such simple nighttime setback modes is that they disrupt a person's circadian rhythms and can impair both the duration and quality of sleep. A thermostat which enhances a person's sleep in an effective and easy-to-use manner would be a welcome advance.
In one aspect, the present disclosure is directed to a sleep-enhancing method of operating an HVAC system. The method includes determining the onset of a sleep time period and decreasing the target temperature of the HVAC system according to a temperature profile that emulates the change in body temperature of a human being during sleep. In embodiments, the method includes increasing the target temperature of the HVAC system prior to the end of the sleep time period. In embodiments, the method further enhances sleep by commencing the lowering prior to the onset of the sleep time period to cause the temperature profile to lead the change in body temperature of a human being during the sleep time period. In embodiments, the temperature profile defines a plurality of consecutive sub-periods. In embodiments, during a first sub-period the target temperature decreases at a first rate. In embodiments, during a second sub-period, the target temperature decreases at a second rate. In embodiments, during a third sub-period, the target temperature remains unchanged. In embodiments, during a fourth sub-period, the target temperature increases at a third rate. In embodiments, the determining is based on a schedule and/or an occupancy. In embodiments, the rate of change of the target temperature of the HVAC system is no more than about 0.025° C. per minute.
In another aspect, the present disclosure is directed to sleep-enhancing controller for an HVAC system. In embodiments, the controller includes a wall-mounted thermostat. In embodiments, the controller includes a temperature sensor interface, an HVAC control interface, a processor in operative communication with the temperature sensor interface and the HVAC control interface, and a memory in operative communication with the processor. The memory includes instructions, which, when executed by the processor, cause the sleep-enhancing controller to determine the onset of a sleep time period and decrease the target temperature of the HVAC system according to a temperature profile that emulates the change in body temperature of a human being during sleep. In embodiments, the instructions further cause the sleep-enhancing controller to raise the target temperature of the HVAC system prior to the end of the sleep time period. In embodiments, the instructions further cause the controller to commence lowering the target temperature prior to the onset of the sleep time period to cause the temperature profile to lead the change in body temperature of a human being during the sleep time period. In embodiments, during a first portion of the sleep time period, the instructions cause the controller to decrease the target temperature at a first rate. In embodiments, during a second portion of the sleep time period, the instructions cause the controller to decrease the target temperature at a second rate. In embodiments, during a third portion of the sleep time period, the instructions cause the controller to maintain the target temperature unchanged. In embodiments, during a fourth portion of the sleep time period, the instructions cause the controller to increase the target temperature at a third rate. In embodiments, the instructions further cause the controller to determine the onset of the sleep time period based on a predetermined sleep schedule. In embodiments, the controller includes an occupancy sensor interface in operable communication with the processor and wherein the instructions further cause the controller to determine an occupancy state based on a signal received from the occupancy sensor interface and to determine the onset of the sleep time period in response to the occupancy state. In embodiments, the instructions further cause the controller to limit the rate of change of the target temperature of the HVAC system to no more than about 0.025° C. per minute.
Various embodiments of the disclosed system and method are described herein with reference to the drawings wherein:
Fig, 4 is a flowchart illustrating a method of sleep enhancement in an HVAC system in accordance with the present disclosure; and
The various aspects of the present disclosure mentioned above are described in further detail with reference to the aforementioned figures and the following detailed description of exemplary embodiments.
Particular illustrative embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Well-known functions or constructions and repetitive matter are not described in detail to avoid obscuring the present disclosure in unnecessary or redundant detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in any appropriately detailed structure. In this description, as well as in the drawings, like-referenced numbers represent elements which may perform the same, similar, or equivalent functions. The word “exemplary” is used herein to mean “serving as a non-limiting example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. The word “example” may be used interchangeably with the term “exemplary.”
Aspects of the present disclosure are described herein in terms of functional block components and various processing steps. It should be appreciated that such functional blocks configured to perform the specified functions may be embodied in mechanical devices, electromechanical devices, analog circuitry, digital circuitry, and/or modules embodied in a computer. For example, the present disclosure may employ various discrete components, integrated circuit components (e.g., memory elements, processing elements, logic elements, look-up tables, and the like) which may carry out a variety of functions, whether independently, in cooperation with one or more other components, and/or under the control of one or more processors or other control devices. It should be appreciated that the particular implementations described herein are illustrative of the disclosure and its best mode and are not intended to otherwise limit the scope of the present disclosure in any way. One skilled in the art will also appreciate that, for security reasons, any element of the present disclosure may consist of any combination of databases or components at a single location or at multiple locations, wherein each database or system includes any of various suitable security features, such as firewalls, access codes, authentication, encryption, de-encryption, compression, decompression, and/or the like. It should be understood that the steps recited herein may be executed in any order and are not limited to the order presented. Moreover, two or more steps or actions recited herein may be performed concurrently.
In one aspect, the present disclosure is directed to a sleep-enhancing HVAC thermostat and related systems and methods for inducing and improving sleep of a person in the temperature-controlled environment. Aspects of the present disclosure utilize techniques which emulate a human body's natural temperature decline at the onset of, and during, sleep. The technique causes the controlled environment temperature to emulate the rate and timing of the body's natural decline in temperature, and, in a related aspect, the timing of the environmental temperature change leads the body's natural temperature changes, which further helps induce and maintain sleep. In a related aspect of the present disclosure, the temperature of the environment is increased at the end of the sleep period when the body is at its coldest, which further helps avoid disruption of natural sleep patterns that occur towards the end of the sleep period. In another aspect of the present disclosure, the rate of change of the environment temperature is limited to no more than the rate that will wake a sleeping person, which has been determined to be no more than 0.025° C./minute or 2.7° F./hour. In yet another aspect of the present disclosure, the thermostat and related systems and methods include determining the onset of a sleep period via a scheduled sleep time, receipt of a user input, by utilizing current and historical environmental sensor inputs such as motion, occupancy, and CO2 levels, and/or by utilizing current and historical physiological sensor inputs such as heart rate, body temperature, skin temperature, blood pressure, respiration rate, blood oxygen (SpO2), and galvanic skin resistance.
In more detail, and with reference to
Data interface 14 is configured to communicate using one or more of a wireless communication protocol, such as without limitation, any variant of IEEE 802.11 (commonly known as WiFi), variants of IEEE 802.15 wireless personal area networking such as Bluetooth® and Z-Wave®, and other wireless standards such as ZigBee®. Data interface 14 may be additionally or alternatively be configured to communicate using a wired protocol using dedicated data lines (e.g., Ethernet) or via powerline communication links using, for example, IEEE 1901, X10® and/or Insteon® protocol.
Data interface 14 may be additionally or alternatively be configured to communicate using a wide area cellular mobile network using, for example and without limitation, a GSM protocol (3G, 4G, LTE etc.), a CDMA protocol (EV-DO, SV-DO, etc.), and so forth. In embodiments, data interface 14 is configured as a WiFi hot-spot or wired router to enable thermostat 10 to provide internet access via the cellular data network to other internet-enabled devices within the home, such as computers, notebooks, mobile devices, streaming media devices, security devices, appliances, and so forth.
HVAC interface 16 is configured to communicate between thermostat 10 and HVAC equipment 20 using any communications protocol suitable for use with HVAC equipment 20. For example, and without limitation, where indoor unit 21, outdoor unit 22, and/or furnace 23 employ single- or dual-speed motors, HVAC interface 16 may include a 24V switched circuit interface which operates with well-known HVAC color-coded wiring schemes (Rc, Rh, C, Y, W, Y2, W2, etc.). Where indoor unit 21 and/or outdoor unit 22 employ variable-speed motors, HVAC interface 16 may include a digital signaling interface such as, without limitation, CAN bus, RS-485, ComfortLink II™ ClimateTalk™, and the like. In embodiments, HVAC interface 16 may operate using both 24V switched circuits and digital signaling protocols to flexibly accommodate any combination of HVAC equipment. In embodiments, any of the functions of data interface 14 may be performed by HVAC interface 16, and vice versa. In embodiments, HVAC interface 16 may be incorporated within data interface 14.
Thermostat 10 is configured for communication with one or more remote devices 34 via network 30 (which may include a LAN, Z-Wave® or ZigBee® mesh network, and/or the public internet). Remote device 34 may include, without limitation, a mobile device, smart phone, a tablet, a notebook computer, a desktop computer, smart TV, and/or a touchscreen device.
In some embodiments, outdoor unit 21 and indoor unit 22 may be configured as a split HVAC system wherein outdoor unit 21 is configured as an air conditioner or heat pump unit, and indoor unit 22 is configured as an air handling unit. In other embodiments, outdoor unit 21 and indoor unit 22 may be included in a packaged system which shares a common enclosure. In some embodiments, outdoor unit 21 and/or indoor unit 22 may include an auxiliary heater 24 for use when a heat pump alone is insufficient to meet the heating demand of the home. Furnace 23 and/or auxiliary heater 24 provide heat via combustion and/or resistive electrical elements.
Thermostat 10 includes a sleep profile 17, a sleep onset determination module 18, and a scheduling module 19. As will be appreciated by one of ordinary skill in the art, aspects of the present disclosure, including but not limited to sleep profile 17, sleep onset determination module 18, and scheduling module 19, may take the form of an entirely software embodiment, an entirely hardware embodiment, or an embodiment combining both software and hardware. Embodiments may take the form of a computer program product on any suitable non-transitory computer-readable storage medium having computer-readable program code embodied in the storage medium. Any suitable computer-readable storage medium may be utilized, including semiconductor storage devices, e.g., mask ROM, EEPROM, flash memory, USB thumb drives, and the like. Computer program instructions embodying the present disclosure may be stored in memory 13 or other computer-readable memory that can direct processor 11, a computer, or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture, including instruction means, that implement the functions described herein.
Sensor device 31 incorporates one or more sensors that are configured to sense a property of the controlled environment. In an embodiment, sensor device 31 includes one or more of a motion detector, an occupancy detector, a temperature sensor, a humidity sensor, light sensor, or a CO2 sensor. The sensed property is communicated to sleep onset detection module 18, which monitors any one, some, or all of these properties to assess the level of human activity within the controlled environment to determine the onset of sleep. By monitoring motion sensing, occupancy, and/or CO2 levels in the controlled environment, sleep onset detection module 18 determines the sleeping habits of the home's occupants. For example, where sensor device 31 detects an absence of motion in conjunction with a decrease in CO2, sleep onset detection module 18 determines that a sleep period has begun, which, in turn, begins execution of sleep profile 17.
Scheduling module 19 stores one or more schedules which enable thermostat 10 to vary setpoint temperature at pre-programmed times. In a typical embodiment, includes the capability of following a different schedule based upon day of week, for example, a weekday schedule and a weekend schedule may be stored in scheduling module 19. Each schedule includes a plurality of time/temperature setpoint entries which define the time at which the associated temperature setpoint is active. A schedule may be predefined and/or may be editable by a user as desired. In an embodiment, scheduling module 19 includes a time/temperature entry for morning (wake-up), day (at work), evening (dinnertime) and night (sleep time). The night/sleep time entry may, in some embodiments, be configured to act as a sleep onset event, which is communicated to sleep onset determination module 18 to trigger the execution of sleep profile 17. Preferably, thermostat 10 is configured to allow sleep onset determination module 18 to trigger the execution of sleep profile 17 in advance of the night/sleep time entry to enable sleep profile 17 to lead the user into sleep. In embodiments, thermostat 10 is configured to trigger execution of sleep profile 17 two hours prior to the scheduled night/sleep time.
Sleep onset determination module 18 may additionally or alternatively receive user physiological parameters from a wearable device 32 worn by a user. Such user physiological parameters include, without limitation, heart rate, body temperature, skin temperature, blood pressure, respiration rate, blood oxygen (SpO2), and/or galvanic skin resistance. Any one, some or all of the user physiological parameters are transmitted by wearable device 32 to sleep onset detection module 18, which, in turn, determines the onset of sleep based on the one or more received user physiological parameters. For example, if a decrease in respiration rate is detected alone or in conjunction with a decrease in body temperature, a sleep onset event is deemed to have occurred and sleep onset determination module 18 causes execution of sleep profile 17 to commence.
In embodiments where HVAC system 1 includes a plurality of sensor devices 31 placed throughout the controlled environment, environmental parameters from throughout the environment are utilized to detect and predict the onset of sleep. For example, if a family typically gathers in the living room after dinner for three hours before going to sleep, environmental parameters consistent with this activity will detected by the living room sensor device 31 (e.g., raised CO2 levels, limited motion detected). If this pattern is repeated over several days, sleep onset detection module 18 will begin execution of sleep profile 17 at the observed time, e.g., three hours after raised CO2 levels and limited motion is detected at living room sensor device 31. In some embodiments, sleep onset detection module 18 will begin execution of sleep profile 17 prior to the observed time, e.g., two hours before the predicted sleep time, to lead the users into sleep.
In embodiments, HVAC system 1 includes a plurality of wearable devices 32, each worn by an individual user, that are in communication with sleep onset detection module 18. In these embodiments, sleep onset detection module 18 monitors the current and historical physiological data of each individual user to determine the onset of sleep of each user, and/or to record and predict the desired sleep time of each user. In embodiments, wearable device 32 includes a unique electronic identifier that is communicated to sleep onset detection module 18. Thermostat 10 may commence the execution of sleep profile 17 based on a compromise sleep onset time (e.g., the mean bedtime of the plurality of individual users). In embodiments where HVAC system 1 includes multiple zone capability, or, for example, the ability to independently adjust the temperature of each bedroom, multiple sleep profiles may be executed concurrently to accommodate the sleep schedules of individual occupants.
HVAC system 1 additionally or alternatively includes a bedside device 33 that, in the example embodiment illustrated in
Upon detection of a sleep onset event, sleep onset determination module 18 causes execution of sleep profile 17 to commence, and, in embodiments, records the sleep onset event as part of a learning process. The sleep onset event may be represented by data items such as time of event, date, and day-of-week. A sequence number and/or a unique electronic identifier may be recorded which enumerates and/or distinguishes the instant sleep onset event among a plurality of sleep onset events recorded in a given evening. This enables, for example, thermostat 10 to monitor different residents of the household who may go to bed at different times.
As shown in
Upon initial execution, sleep profile 17 enters a first temperature decreasing portion 43 wherein the setpoint temperature is decreased 1.0° F. over the course of two hours, e.g., the setpoint is changed at a rate of about −0.5° F./hour. In the present example, the setpoint reaches 71° F. at 10:00 PM (point 44). At point 44, a second temperature decreasing portion 45 is entered during which the rate of setpoint decrease accelerates to about −1.0° F./hour for a period of two hours e.g., about twice the rate of the first temperature decreasing portion. Note that in the present example, the desired onset of sleep 46 occurs approximately halfway though second temperature decreasing portion 45, e.g., at 11:00 PM. When the second temperature decreasing portion 45 is completed, at point 47 a temperature sustaining portion 48 is entered where the setpoint is held unchanged for four hours. As shown in the
At point 49 a first temperature increasing portion 50 is entered during which the setpoint temperature is increased 1.0° F. over the course of two hours, e.g., the setpoint is changed at a rate of about +0.5° F./hour. Note that point 49 occurs two hours prior to point 51, the end of the target sleep period. At point 51, a second temperature increasing portion 52 is entered during which the rate of setpoint decrease accelerates to about +1.0° F./hour for a period of two hours, e.g., about twice the rate of the first temperature increasing portion. At point 53, or 8:00 AM, the setpoint has reached the original base setpoint 41 of 72° F., and the sleep profile concludes.
Turning to
If a sleep pattern is identified, then in block 63 the sleep onset time(s) become active and are entered into an HVAC setpoint schedule. In block 64, the HVAC sleep profile is initiated in advance of the scheduled sleep onset time in order to lead the occupants into sleep, and in block 65, the sleep profile is executed as described in detail above.
It is noted that any of aspects 1-20 may be combined with each other in any suitable combination.
Aspect 1. A sleep-enhancing method of operating an HVAC system, comprising determining the onset of a sleep time period and decreasing the target temperature of the HVAC system according to a temperature profile, wherein the temperature profile emulates the change in body temperature of a human being during the sleep time period.
Aspect 2. The method in accordance with aspect 1, further comprising increasing the target temperature of the HVAC system prior to the end of the sleep time period
Aspect 3. The method in accordance with aspect 1 or 2, further enhancing sleep by commencing the lowering prior to the onset of the sleep time period to cause the temperature profile to lead the change in body temperature of a human being during the sleep time period.
Aspect 4. The method in accordance with any of aspects 1-3, wherein the temperature profile defines a plurality of consecutive sub-periods
Aspect 5. The method in accordance with any of aspects 1-4, wherein during a first sub-period, the target temperature decreases at a first rate.
Aspect 6. The method in accordance with any of aspects 1-5, wherein during a second sub-period, the target temperature decreases at a second rate.
Aspect 7. The method in accordance with any of aspects 1-6, wherein during a third sub-period, the target temperature remains unchanged.
Aspect 8. The method in accordance with any of aspects 1-7, wherein during a fourth sub-period, the target temperature increases at a third rate.
Aspect 9. The method in accordance with any of aspects 1-8, wherein the determining is based on a schedule and/or an occupancy.
Aspect 10. The method in accordance with any of aspects 1-9, wherein the rate of change of the target temperature of the HVAC system is no more than about 0.025° C. per minute.
Aspect 11. A sleep-enhancing controller for an HVAC system, comprising a temperature sensor interface, an HVAC control interface, a processor in operative communication with the temperature sensor interface and the HVAC control interface, and a memory in operative communication with the processor including instructions, which, when executed by the processor, cause the sleep-enhancing controller to determine the onset of a sleep time period and decrease the target temperature of the HVAC system according to a temperature profile that emulates the change in body temperature of a human being during sleep.
Aspect 12. The controller in accordance with aspect 11, wherein the instructions further cause the sleep-enhancing controller to raise the target temperature of the HVAC system prior to the end of the sleep time period.
Aspect 13. The controller in accordance with aspect 11 or 12, wherein the instructions further cause the controller to commence lowering the target temperature prior to the onset of the sleep time period to cause the temperature profile to lead the change in body temperature of a human being during the sleep time period.
Aspect 14. The controller in accordance with any of aspects 11-13, wherein during a first portion of the sleep time period, the instructions cause the controller to decrease the target temperature at a first rate.
Aspect 15. The controller in accordance with any of aspects 11-14, wherein during a second portion of the sleep time period, the instructions cause the controller to decrease the target temperature at a second rate.
Aspect 16. The controller in accordance with any of aspects 11-15, wherein during a third portion of the sleep time period, the instructions cause the controller to maintain the target temperature unchanged.
Aspect 17. The controller in accordance with any of aspects 11-16, wherein during a fourth portion of the sleep time period, the instructions cause the controller to increase the target temperature at a third rate.
Aspect 18. The controller in accordance with claim any of aspects 11-17, wherein the instructions further cause the controller to determine the onset of the sleep time period based on a predetermined sleep schedule.
Aspect 19. The controller in accordance with any of aspects 11-18, further comprising an occupancy sensor interface in operable communication with the processor and wherein the instructions further cause the controller to determine an occupancy state based on a signal received from the occupancy sensor interface and to determine the onset of the sleep time period in response to the occupancy state.
Aspect 20. The controller in accordance with any of aspects 11-19, wherein the instructions further cause the controller to limit the rate of change of the target temperature of the HVAC system to no more than about 0.025° C. per minute.
Particular embodiments of the present disclosure have been described herein, however, it is to be understood that the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in any appropriately detailed structure.
This application claims the benefit of and priority to U.S. Provisional Application Ser. No. 62/385,589 entitled “SLEEP ENHANCEMENT IN AN HVAC SYSTEM” and filed Sep. 9, 2016, the entirety of which is hereby incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
62385589 | Sep 2016 | US |