Sleeper assembly for resilient hardwood floor system

Information

  • Patent Grant
  • 6367217
  • Patent Number
    6,367,217
  • Date Filed
    Thursday, November 4, 1999
    24 years ago
  • Date Issued
    Tuesday, April 9, 2002
    22 years ago
Abstract
A resilient floor includes a plurality of parallel spaced rows of sleeper assemblies, or substructure members, supported by pads over a base, with a wear layer of floorboards secured to the rows of substructure members. The substructure members include an elongated lower panel with a pair of spaced rows of pads secured along the bottom surface of the panel, and corresponding rows of nailing strips secured to the top surface of the panel, to which the wear layer is secured. The panel may also include an middle row of designations, such as holes, for locating anchors to anchor the panel to the base, if it is desired to anchor the floor. Compared to other resilient floors the substructure members of this invention simplify and reduce installation and handling time, resulting in reduced labor costs. The structure itself also provides high strength and durability, but with reduced quantity and cost of material.
Description




FIELD OF THE INVENTION




The present invention relates to floors, and more particularly, to hardwood floors having a wear layer supported over a base by compressible pads and a sleeper assembly, or substructure, which includes parallel rows of nailing strips for securing the wear layer.




BACKGROUND OF THE INVENTION




Wood floors remain popular for athletic and residential applications, for a number of reasons including aesthetics, quality, stability, ease of maintenance, durability, etc. One popular type of wood floor employs parallel rows of tongue and groove floorboards, laid end to end, across the entire floor surface.




Particularly with hardwood sports floors used primarily for athletics, such as basketball, it is desirable to provide some degree of cushioning, or impact absorption, for the upper surface of the floor relative to the base, or underlying surface. This is typically done by supporting the floorboards above the base via pads, and in most cases the floorboards are secured to the top surface of some intermediate structure, with the pads located below the intermediate structure. The use of pads in this manner creates an open air space, or air break, between the floor and the base, thereby minimizing moisture ontake by the intermediate structure or the floorboards, which are usually made of wood. If the structure does not include some mechanism for attachment to the base, the floor is said to be “free floating” relative to the base.




In some cases it is desirable to secure, or anchor, the floor to the base, primarily for stability and to minimize the potentially adverse effects of floorboard expansion and contraction which may occur as a result of moisture ontake and/or egress as humidity levels change with the seasons. Also, this moisture-caused expansion and contraction of floorboards adversely affects the performance uniformity of the floor. Thus, anchoring the floor helps to assure uniformity in performance. These dual objectives, to resiliently support the floorboards above the base and to anchor the floorboards to the base, are not easy to achieve simultaneously. Because of this situation, there have been a number of recent developments in the athletic hardwood floor industry.




More specifically, assignee's U.S. Pat. No. 5,388,380, entitled “Anchored/Resilient Sleeper for Hardwood Floor System” (“Niese '380”) and issued in the name of Mike Niese, discloses several anchoring arrangements for anchoring attachment members to a base, with the attachment members supported on pads above the base and anchored in a manner which does not precompress the pads. Generally, Niese '380 relates to resiliently anchoring parallel rows of relatively narrow elongated attachment members which are spaced from each other.




Another patent of the present assignee, U.S. Pat. No. 5,609,000, entitled “Anchored/Resilient Hardwood Floor System” and also issued to Mike Niese (“Niese '000”), discloses, among other things, some variations in the intermediate structure of the floor which resides between the floorboards and the pads. These structural variations maintain the same benefits of being anchored to the base in a resilient manner, yet in a manner which does not precompress the pads, while also to some extent facilitating the manner of simultaneously achieving these objectives.




For these floors, as perhaps with all floors, there remains a high customer demand for improvements such as lower cost, shorter installation time, uniformity in performance, sufficient air flow, easier handling, and reduced quantity of materials, without any reduction in the floor's other attributes, such as being anchored and resilient but with no pad precompression, or only minimal pad precompression.




It is therefore an object of the present invention to optimally achieve these customer demands, primarily the demands for reduced costs and shorter installation time, for a floor which is anchored to a base and/or resiliently supported above a base.




SUMMARY OF THE INVENTION




The present invention achieves the above-stated objects via a floor substructure attachment member, i.e. a sleeper assembly, having an elongated lower panel with pads residing along the bottom surface, and a pair of spaced nailing strips located on the top surface of the panel along the longitudinal edges. Between the rows of top nailing strips and the bottom pads, which are preferably in rows there below, the member includes one or more designations, preferably predrilled holes aligned in a row, for anchoring the substructure member to a base via anchors, if desired.




The sleeper assemblies, or substructure members, are laid out end to end in spaced rows over a base, and oriented perpendicular to the orientation of the floorboard rows located thereabove. To achieve proper spacing between adjacent rows of substructure members, during installation spacers may be placed temporarily between adjacent rows of substructure members. This results in equidistant spacing of the rows of nailing strips across the entire floor, even though there are open spaces between adjacent rows of substructure members. If the rows of substructure members are to be anchored, this can be done by extending anchors through the predrilled holes and then anchoring them into the base via conventional methods. Preferably, prior to driving, a hole is drilled into the base, with drill access to the base being provided by the predrilled holes in the panel. The upper floorboards are fastened to the nailing strips, preferably by nails (or other industry standard fasteners, such as staples) driven at an angle, as is well known in the hardwood floor industry.




With this invention, due to the width of the elongated substructure members, combined with the two spaced rows of pads at the bottom of the members, the substructure members are very stable once laid in place on the base. It is virtually impossible to tip them over. Such tipping has been known to occur relatively frequently with narrow attachment members supported on only a single row of pads, a substructure commonly used for hardwood floors. Obviously, such tipping over creates delays and aggravation for installers. Such tipping also heightens the potential for misalignment of attachment members, which may lead to non-uniformity of the floors. Thus, this invention simplifies installation and eliminates unnecessary delays. Also, the rows of these substructure members are relatively easy to keep in alignment once laid in place over the base. This feature is extremely beneficial in free-floating flooring systems.




Compared to the relatively narrow attachment strips which have been commonly used, the relatively wide and flat engineered panels of these substructure members are not subject to curvature or warping from moisture. Again, once laid in place on the base, the substructure members of this invention stay in place, and stay in straight lines. By using plywood for the panels and the strips, the members can be made in lengths of up to eight feet, or even longer, but still at relatively low cost. The longer the members, the easier and more expedient the installation.




Compared to prior subfloor comprising parallel rows of narrow attachment members, this invention uses two rows of nailing strips for every one row of attachment members. Thus, the number of installed rows of the floor's intermediate structure is halved. If the substructure members are anchored, the installation requires only one row of anchors per two rows of nailing strips. Again, this represents a reduction in installation and handling time and lower labor costs, but with a high degree of stability.




This invention also reduces material costs. The panels of the substructure members may be cut from plywood, or any other suitably strong material of relatively uniform thickness. The nailing strips can also be formed of similar material, with similar thickness and length but significantly less width.




Compared to other floors, the floor of this invention achieves incredibly high stability and strength, but with significantly less material. When the floorboards are secured to the nailing strips, with the nailing strips secured to the lower panel, the combined structure has a stiffening effect similar to an “I-beam” or a structural channel. Thus, the invention achieves a high strength floor with a relatively low material cost.




According to a preferred embodiment of the invention, an anchored/resilient floor includes an upper wear layer of floorboards supported in spaced relation above a base by compressible pads, with spaced rows of substructure members residing between the pads and the wear layer. Each substructure member includes an elongated panel with a pair of spaced rows of pads secured to the bottom surface along opposite edges, and a corresponding pair of rows of nailing strips secured to the top surface, above the pad rows. The wear layer is secured by fasteners to the substructure members, via the rows of nailing strips. The rows of substructure members are spaced from each other a distance such that the rows of nailing strips are generally equidistant from each other throughout the entire floor.




The panels may also include a selected member of designations, preferably a middle row of predrilled holes, extending parallel to and residing between the two rows of nailing strips. If the substructure members are anchored, the anchors are driven into the base through the holes, preferably into holes already drilled into the base. The anchors may be configured so as to include a depth stop, or any other physical structure for preventing precompression of the pads which could otherwise result from pressurized shooting of the anchors into the base. However, compared to other substructures for anchored/resilient floors, this invention reduces the need to use a depth stop or some other depth controlling structure. This is because the pad rows are spaced away from the center row of designation holes and because the relatively thin lower panel flexes during shooting of the anchors into the base. As a result, even without a depth stop there may not be any precompression of the pads, or only negligible precompression. The anchors may include a lubricating collar, such as nylon, to prevent squeaking during relative movement between the panel and the anchor. Because the fasteners which hold the wear layer are spaced laterally away from the anchors, and also because the anchors are also spaced laterally from the pads, this inventive floor has fewer squeaks. If desired, the predrilled holes in the panel may also be somewhat elongated in the elongated direction of the substructure members, to allow some lateral movement of the floorboards.




Once installed, the heads of the anchors are spaced sufficiently from the bottom of the wear layer, i.e. the floorboards, so that downward deflection of the floorboards upon impact to the surface of the floorboards, as the pads compress, will not result in contact between the head ends of the anchors and the bottoms of the floorboards.




These and other features of the invention will be more readily understood in view of the following detailed description and the drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view, with a portion broken away, of a floor constructed in accordance with a first preferred embodiment of the invention.





FIG. 2

is a plan view, again with a portion broken away, showing parallel rows of end to end substructure members, laid out over a base, in accordance with the first preferred embodiment of the invention.





FIG. 3

is a cross sectional view taken along lines


3





3


of FIG.


2


.





FIG. 4

is a cross sectional view taken along lines


4





4


of FIG.


3


.











DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

shows, in perspective view with a broken away portion, a floor


10


constructed in accordance with a first preferred embodiment of the invention. The floor


10


includes a plurality of parallel rows of floorboards


12


laid end to end, thereby to form a wear layer for the floor


10


. Preferably, the floorboards


12


are tongue and groove, as is well known in the hardwood floor industry. If desired, the wear layer


12


could comprise something other than parallel rows of elongated floor boards laid end to end, such as parquet sections. In that case it may be desirable to orient the wear layer


12


differently relative to underlying components, by angling the rows of underlying components. Nevertheless, the present invention is particularly suitable for a wear layer


12


of parallel rows of floorboards.




A plurality of spaced parallel rows of sleeper assemblies, or substructure members,


14


support the floorboards


12


on a plurality pads


16


(see

FIGS. 3 and 4

) above a base


18


. The base


18


is typically concrete, but may be any other sufficiently solid material for rigidly supporting the floor


10


thereabove. The pads


16


are preferably of EPDM rubber and compressible and deflectable, thereby to permit downward deflection of the floorboards


12


upon impact thereabove. Pads


16


which are particularly suitable for use in this invention are shown in applicant's issued U.S. Pat. No. 5,377,471 entitled “Prefabricated Sleeper for Anchored and Resilient Hardwood Floor System.”




The rows of substructure members


14


are preferably laid out so that the end joints of the members


14


are staggered, as shown in FIG.


2


. The width of the substructure members


14


is preferably about 16 inches and the length of the substructure members


14


may be up to


8


feet, or even longer, although to stagger the joints of the rows of members


14


it is necessary to have at least some structure members


14


of reduced length to accommodate staggering of adjacent rows at the wall. Each of the substructure members


14


includes an elongated panel


20


and a pair of spaced parallel nailing strips


22


extending along opposite top side edges of the elongated panel


20


. Preferably, the elongated panel


20


is formed from plywood, or any other suitably strong, flexible material which can be readily cut to the desired dimensions. In practice, applicant has used plywood having a width of 16 inches (406 mm) and a thickness of {fraction (15/32)} inch (12 mm). The spaced nailing strips


22


are also preferably cut from plywood, with the strips


22


having a length commensurate with the panel


20


, a width of preferably about 2½ inches (64 mm) and also a thickness of about {fraction (15/32)} inch (12 mm), or even lower. Although it is preferable to have a one piece nailing strip


22


which extends along and is secured along the entire length of the panel


20


, that is not absolutely necessary. Each strip


22


may comprise multiple strips laid end to end. Preferably, the strips


22


are secured to the panel


20


, as by staples or adhesive.




Also, those skilled in the art will readily appreciate that the U-shape configuration formed by the panel


20


and the spaced strips


22


can be achieved via a number of different types of materials, different dimensions or spacing, or even achieved from a single piece of material which is cut to the desired shape. The present description and the accompanying Figures refer to only one presently preferred embodiment of the invention.




Between the rows of nailing strips


22


, each panel


20


preferably includes a row of spaced designations


24


which indicate suitable locations for anchoring the substructure member


14


to the base


18


. In most cases, the designations


24


will be preformed or predrilled holes formed in the panel


20


at the factory, prior to shipment to the site. However, there may be situations where the designations


24


are simply markings to indicate suitable locations for anchors. In that case, the anchors could either be driven through the panels


20


during actual anchoring, or holes could be formed in the panels


20


at the site, just prior to installation.




When the parallel rows of substructure members


14


are laid out over the base


18


, they are spaced such that the parallel rows of nailing strips


22


are generally equidistant from each other across the entire base


18


. This is shown in

FIGS. 1 and 2

, which show the layout of the rows of substructure members


14


on the base


18


prior to securement of the wear layer


12


. More specifically,

FIG. 2

shows end spacers


26


, which are used along the ends of the rows of substructure members


14


to provide a desired distance of spacing, preferably about 2 inches, from the end wall of the room in which the floor


10


is being installed. Preferably, between the rows of substructure members


14


lateral spacers


28


are placed to enable the installers to readily obtain the correct spacing between adjacent rows of substructure members


14


, so as to achieve equidistant spacing of all of the nailing strips


22


. Also, as shown in

FIG. 2

, the substructure members


14


have three different lengths, preferably by field cutting at the site, identified by reference numerals


14




a


,


14




b


and


14




c


, to permit staggering of the end joints of adjacent rows at the end wall.




As can readily be appreciated from

FIGS. 1 and 2

, the floor


10


is relatively open below the wear layer


12


, due to the spacing above the base


18


provided by the pads


16


and the spacing between the rows of substructure members


14


. These views help to visualize that the present invention represents a reduction in the volume of material needed to provide a stable resilient floor


10


held in spaced relation above a base


18


, compared to prior wood floors having a panel-type subfloor.




Also, even though the present invention may require slightly more material than required by prior floors supported on spaced rows of narrow attachment members, the present invention provides a significant cost savings over those floors because the floor of this invention is much easier to handle and install. The simplified and shortened installation time results in reduced labor costs, thereby reducing the overall cost of the floor


10


.




More specifically, because the substructure members


14


include a pair of spaced rows of pads


16


which reside below the spaced rows of nailing strips


22


(as best shown in FIGS.


3


and


4


), the substructure members


14


are not susceptible to tipping over once laid out over the base


18


. Moreover, because the substructure members


14


include an elongated panel


20


which has a greater width than relatively narrow attachment members, the width is sufficient to accommodate two rows of pads


16


. This makes the rows of substructure members


14


relatively easy to lay out and keep in place once laid out over the base


18


. Since the pads


16


are preferably already attached to the elongated panels


20


, preferably by stapling the pads


16


to the panels


20


at the factory, and the nailing strips


22


are already secured to the tops of the panels


20


, (again, at the factory) the substructure members


14


are shipped in “ready to install” form. At the site, they are readily laid out in spaced parallel rows over the base


18


.




Although it is preferable to anchor the floor


10


of this invention, anchoring is not necessary. If the floor


10


is anchored, the anchoring occurs relatively quickly and in a simplified manner when compared to prior anchored resilient floor systems. One reason for simplified anchoring results from the use of one row of anchors


30


for every two rows of nailing strips


22


, as described previously.





FIG. 3

shows a preferred embodiment for anchoring the floor


10


of the present invention. More specifically,

FIG. 3

shows an anchor


30


holding the panel


20


to the base


18


. The anchor


30


preferably includes a depth stop


32


which is located a predetermined distance from the head


34


of the anchor


30


so as to limit downward driving of the anchor


30


, to a distance which does not provide precompression to the pads


16


during installation. Since the anchors


30


are typically driven in manually or mechanically, the depth stop


32


engages the base


18


and then limits further downward movement. As an alternative to the depth stop


32


, other physical structure may be used to limit downward movement of the anchor


30


during installation. As disclosed in the previously mentioned Niese '380 and '000 patents, such other structure may be a permanent structure, or alternatively, the structure may be a temporary spacer of some sort which is held in place beneath the panel


20


during downward driving of the anchor


30


, but removed after the anchor


30


is installed at the desired depth.

FIG. 3

also shows a sleeve


36


, which is preferably of nylon or any other suitable lubricating material, to minimize squeaking which may otherwise occur as a result of relative movement between the anchor


30


and the panel


20


.




Once the attachment member


14


is anchored to the base


18


, the bottom surface


38


thereof is spaced away from a top surface


40


of the substructure member


14


. This spacing is sufficiently great such that the downward deflection of the floorboards


12


upon impact thereabove does not cause the bottom surface


38


to come in contact with the heads


34


of the anchor pins


30


.





FIG. 3

also shows a bottom surface


42


of substructure member


14


, to which the spaced rows of pads


16


are secured along opposite elongated side edges of the panel


30


.

FIGS. 1 and 2

show the equidistant spacing of the designations


24


relative to the rows of nailing strips


22


and the rows of pads


16


. As described previously, the pads


16


, the panels


20


and the nailing strips


22


support the wear layer


12


above the base


18


a desired distance, as shown by reference numeral


44


. The overall structure of this floor


10


provides open space


46


below the panels


20


and open space


48


above the panels


20


, and also open spacing between the spaced rows of substructure members


14


, as best shown in

FIGS. 1 and 2

.





FIG. 4

shows the tongue and groove connection of adjacent floorboards of the wear layer


12


, in accordance with the preferred embodiment of the invention. As shown, the floorboards


12


are secured to the nailing strip


22


via nails


50


which extend downwardly through the floorboards, preferably at an angle, into the nailing strip


22


and on into the panel


20


.




To install the floor


10


of this invention, a suitable number of substructure members


14


and floorboards


12


are shipped to the site of installation. Each of the substructure members


14


already has a pair of spaced rows of pads


16


secured to the bottom surface


42


along side edges thereof, typically by staples (not shown) and a corresponding spaced pair of nailing strip


22


rows secured to the top surface


40


of the panel


20


above the pads


16


. The nailing strips


22


may be secured to the panels


20


by adhesive or any other suitable mechanical fastener. The panels


20


also include the middle row of designations


24


. The rows of substructure members


14


are laid out over the base


18


, as shown in

FIG. 2

, with adjacently located rows being staggered via use of some shortened substructure members


14


at the end wall. Then, if the floor


10


is to be anchored, anchors


30


are driven into the base


18


via the predrilled holes located at the designations


24


. Preferably, this is done by first extending a drill through predrilled holes located at the designations


24


, to drill holes into the base


18


. Then, anchors


30


are extended downwardly through the designation holes


24


, in alignment with holes in the base, and then driven downwardly to the desired depth, which may be limited via depth stops


32


integral with the anchors


30


.




The securement of the rows of substructure members


14


results in anchoring of the substructure for the floor


10


, but in a resilient manner above the base


18


, and also in a resilient manner which produces no precompression of the pads


18


. Thereafter, the wear layer


12


is secured to the rows of substructure members


14


. This is typically done by securing a plurality of parallel rows of tongue and groove floorboards, laid end to end, with the floorboards


12


secured to the spaced rows of nailing strips


22


via nails


50


.




Compared to prior anchored resilient floors, the installation of the present floor


10


is a relatively simple and can be done at a lower cost. Due to the structural arrangement of the components, an anchored resilient floor


10


having minimal or no precompression of the pads can be achieved with a reduced amount of material. Even compared to other free floating hardwood floors, or other anchored floors which may have little or no resilience, the present invention represents a number of advantages to the end user, primarily due to the achievement of a uniformly stable and strong hardwood floor


10


with substantially lower installation, handling and material costs.




While this application describes one presently preferred embodiment of this invention, those skilled in the art will readily appreciate that the invention is susceptible of a number of structural variations from the particular details shown and described herein. For instance, the structure and arrangement of the pads


16


, the panels


20


, the nailing strips


22


and the locations of the anchors


30


may be rearranged to achieve desired effects, or perhaps reduce costs, or simplified installation. Therefore, it is to be understood that the invention in its broader aspects is not limited to the specific details of the embodiment shown and described. The embodiment shown and described is riot meant to limit in any way or to restrict the scope of the appended claims.



Claims
  • 1. An anchored/resilient floor system comprising:an upper wear layer; a plurality of pads supporting the upper wear layer in spaced relation above a base; a substructure residing between the pads and the upper wear layer, the substructure including a plurality of substructure members laid end-to-end in parallel rows, each substructure member having: a) a panel with top and bottom surfaces, with at least some of the pads residing between the bottom surface of the panel and the base, and the top surface of the panel spaced from the wear layer; b) at least two spaced parallel rows of strips residing above the panel and extending parallel with the rows of substructure members, the wear layer secured to the substructure members along the strips; and c) a plurality of anchors holding the substructure members to the base.
  • 2. The anchored/resilient floor system of claim 1 wherein the anchors holding the substructure members are spaced laterally from the pads.
  • 3. The anchored/resilient floor system of claim 1 wherein the pads are arranged in two spaced parallel rows located below two corresponding spaced rows of strips.
  • 4. The anchored/resilient floor system of claim 1 wherein at least some of the anchors include some physical structure for preventing precompression of the pads during installation.
  • 5. The anchored/resilient floor system of claim 4 wherein the physical structure comprises a depth stop formed on the respective anchor.
  • 6. The anchored/resilient floor system of claim 1 wherein the wear layer comprises a plurality of parallel rows of tongue and groove floorboards laid end-to-end, the floorboards secured to the substructure members by fasteners oriented at an angle the floorboards oriented perpendicular to the substructure members and to the spaced rows of strips.
  • 7. The anchored/resilient floor system of claim 1 wherein the strips of the substructure members are secured to the panel.
  • 8. The anchored/resilient floor system of claim 1 wherein the pads are secured to the bottom surfaces of the panels of the substructure members.
  • 9. The anchored/resilient floor system of claim 1 wherein the panels of the substructure members comprise plywood.
  • 10. The anchored/resilient floor system of claim 1 wherein the strips of the substructure members comprise plywood.
  • 11. The anchored/resilient floor system of claim 1 wherein the panels of the substructure members include pre-drilled holes for locating the anchors in desired locations.
  • 12. The anchored/resilient floor system of claim 1 wherein the parallel rows of substructure members are spaced from adjacently located rows.
  • 13. The anchored/resilient floor system of claim 12 wherein the parallel rows of strips are generally equidistant from adjacently located strips, even if one of the adjacently located strips is associated with a different substructure member.
  • 14. An anchored/resilient floor system comprising:an upper wear layer; a plurality of pads supporting the upper wear layer in spaced relation above a base; a substructure residing between the pads and the upper wear layer, the substructure including a plurality of substructure members laid end-to-end in parallel rows, each substructure member having: a) a panel with top and bottom surfaces, with at least some of the pads residing between the bottom surface of the panel and the base, and the top surface of the panel spaced from the wear layer; b) two spaced parallel rows of strips residing above the panel the wear layer secured to the substructure members along the strips; and c) a plurality of anchors holding the substructure members to the base.
  • 15. A substructure for supporting a wear layer of a floor in spaced relation above a base, comprising:an elongated member of generally uniform width and having top and bottom surfaces; a plurality of pads located below the bottom surface of the member and adapted to hold the member in spaced relation above the base when the substructure resides thereon; and at least two spaced parallel rows of upper portions extending longitudinally along the top surface of the member and oriented parallel with a longitudinal axis of the member and adapted to support the wear layer a desired distance above the base and to maintain a desired space between the top surface of the member and the wear layer when the substructure resides on the base.
  • 16. The substructure of claim 15 wherein each of the upper portions comprises at least one elongated piece secured to the respective elongated member.
  • 17. The substructure of claim 15 wherein the pads are arranged in two spaced rows extending along the bottom surface of the member, below two corresponding rows of upper portions.
  • 18. The substructure of claim 15 wherein the elongated member comprises plywood.
  • 19. The substructure of claim 16 wherein the upper portions are secured to the elongated member via fasteners.
  • 20. The substructure of claim 15 wherein the upper portions are secured to the respective elongated member via fasteners.
  • 21. The substructure of claim 15 and further comprising anchors which anchor the member to the base when the member resides thereon.
  • 22. The substructure of claim 21 wherein the anchors anchor the elongated member at designated locations.
  • 23. The substructure of claim 22 wherein the designated locations include pre-drilled holes in the member.
  • 24. The substructure of claim 15 wherein the pads are secured to the bottom surface of the elongated member.
  • 25. A method of installing a floor in spaced relation above a base comprising:locating a plurality of substructure members end to end in parallel rows above the base, each of the substructure members having an elongated lower panel with pads secured to a bottom surface thereof and a pair of spaced upper portions extending along an opposite, top surface thereof, the substructure members residing on the base so that in each row of substructure members the upper portions of the substructure members are in alignment with the upper portions of the other substructure members in the same row; and securing a wear layer to the upper portions of the substructure members via fasteners.
  • 26. The method of claim 25 wherein the wear layer comprises a plurality of parallel rows of tongue and groove floorboards laid end-to-end, the rows of floorboards oriented perpendicular to the rows of substructure members, the fasteners driven through the floorboards and into the upper portions and into the lower panels at an angle.
  • 27. The method of claim 25 wherein the parallel rows of substructure members are spaced from each other.
  • 28. The method of claim 27 wherein the spacing of the rows of the substructure members is such that the upper portions are generally spaced equidistantly across the entire base.
  • 29. The method of claim 27 wherein for each of the substructure members the width of the lower panel is more than twice the combined width of the pair of spaced upper portions.
  • 30. The method of claim 25 and further comprising:securing a subfloor of boards to the substructure members thereabove, prior to securing the wear layer.
  • 31. The method of claim 30 wherein the fasteners are driven into the wear layer and into the subfloor of boards.
  • 32. The method of claim 25 further comprising:anchoring the substructure members to the base, with a plurality of anchors, for each of the substructure members said anchoring occurring subsequent to the locating step and before the securing step.
  • 33. The method of claim 32 wherein the anchoring of each substructure member comprises:extending an anchor downwardly and driving the anchor into the base at a designated location relative to the substructure member and repeating sad extending and driving a number of times equal to the number of designated locations.
  • 34. The method of claim 33 wherein each of the designated locations corresponds to a predrilled hole in the respective lower panel.
  • 35. The method of claim 34 further comprising prior to each extending, performing the following:drilling a hole in the base via the predrilled hole, so that the subsequent extending and driving of the anchor occurs at the hole drilled in the base, thereby to hold the anchor and secure the substructure member.
  • 36. The method of claim 33 wherein the driving occurs in a manner so as to minimize precompression of the pads.
  • 37. The method of claim 36 wherein the anchor includes a depth stop for engaging the base at a predetermined depth, so as to avoid precompression of the pads.
  • 38. The method of claim 25 wherein the pads are oriented in rows along the bottom of the substructure members, in alignment with the upper portion rows located thereabove.
  • 39. The method of claim 28 and further comprising:using spacers between adjacently located rows of substructure members, during the locating step, thereby to achieve equidistant spacing between adjacently located rows of substructure members.
  • 40. A floor system comprising:an upper wear layer; a plurality of pads supporting the upper wear layer in spaced relation above a base; a substructure residing between the pads and the upper wear layer, the substructure including a plurality of substructure members laid end-to-end in parallel rows, each substructure member having: a) a panel with top and bottom surfaces, with at least some of the pads residing between the bottom surface of the panel and the base, and the top surface of the panel spaced from the wear layer; and b) at least two spaced parallel rows of strips residing above the panel, the wear layer secured to the substructure members along the strips, the at least two spaced parallel rows of strips oriented parallel with the rows of substructure members.
  • 41. The floor system of claim 40 wherein the pads are arranged in two spaced parallel rows located below two corresponding spaced rows of strips.
  • 42. The floor system of claim 40 wherein the wear layer comprises a plurality of parallel rows of tongue and groove floorboards laid end-to-end, the floorboards secured to the substructure members by fasteners oriented at an angle the floorboards oriented perpendicular to the substructure members and to the spaced rows of strips.
  • 43. The floor system of claim 40 wherein the strips of the substructure members are secured to the panel.
  • 44. The floor system of claim 40 wherein the pads are secured to the bottom surfaces of the panels of the substructure members.
  • 45. The floor system of claim 40 wherein the parallel rows of substructure members are spaced from adjacently located rows.
  • 46. The floor system of claim 45 wherein the parallel rows of strips are generally equidistant from adjacently located strips, even if one of the adjacently located strips is associated with a different substructure member.
  • 47. A floor system comprising:an upper wear layer; a plurality of pads supporting the upper wear layer in spaced relation above a base; a substructure residing between the pads and the upper wear layer, the substructure including a plurality of substructure members laid end-to-end in parallel rows, each substructure member having: a) a panel with top and bottom surfaces, with at least some of the pads residing between the bottom surface of the panel and the base, and the top surface of the panel spaced from the wear layer; and b) two spaced parallel rows of strips residing above the panel, the wear layer secured to the substructure members along the strips.
  • 48. An anchored/resilient floor system comprising:an upper wear layer; a plurality of pads supporting the upper wear layer in spaced relation above a base; a substructure residing between the pads and the upper wear layer, the substructure including a plurality of substructure members laid end-to-end in parallel rows above the base to define a plurality of parallel substructure rows, each substructure row having: a) two spaced rows of nailing strips oriented parallel with the substructure rows and supported a desired distance above the base by the pads, the pads arranged in parallel rows located below the rows of nailing strips, the wear layer secured to the substructure row along the nailing strips and the wear layer including floorboards oriented transverse to the nailing strips; and b) a plurality of anchors arranged in a row and holding the respective substructure row to the base; the anchors for the floor system arranged in parallel rows across the entire base and oriented parallel with the rows of nailing strips.
  • 49. The anchored/resilient floor system of claim 48 and further comprising, for each of the substructure rows, a plurality of connectors extending between and connecting the two spaced rows of nailing strips, the anchors holding the substructure row along the connectors and between the nailing strips.
  • 50. The anchored/resilient floor of claim 49 wherein there is one connector for each substructure member.
  • 51. The anchored/resilient floor of claim 50 wherein each connector comprises an elongated panel extending between the two spaced rows of nailing strips, the panels extending along the entire length of the respective substructure row.
  • 52. The anchored/resilient floor of claim 51 wherein for each of the substructure members the spaced rows of nailing strips include upper and lower portions, and the respective elongated panel is integral with the lower portions of the nailing strips.
  • 53. The anchored/resilient floor of claim 48 wherein the wear layer comprises a plurality of floorboards laid end to end in parallel rows which are oriented perpendicular to the substructure rows.
  • 54. A method of installing a floor in spaced relation above a base comprising:locating a plurality of substructure members end to end in parallel rows above the base to create a plurality of substructure rows across the base, each of the substructure rows including a pair of spaced nailing strip rows extending along and parallel with the respective substructure row and pads located below the nailing strip rows to support the substructure members in spaced relation above the base, each of the substructure rows also including a plurality of connectors which extend between the spaced nailing strip rows, the connectors defining a designated number of anchor positions, the designated anchor positions arranged in a row residing between and oriented parallel with the pair of spaced nailing strip rows, wherein the substructure rows reside on the base such that a plurality of the nailing strip rows are spaced equidistantly across the base; and securing the substructure rows to the base at the designated anchor positions via a plurality of anchors, the plurality of anchors holding the connectors to the base at a desired distance above the base, whereby only a single row of anchors is required to secure each pair of spaced nailing strip rows.
  • 55. The method of claim 54 wherein for each substructure member the connector is a single piece.
  • 56. The method of claim 55 wherein for each substructure member the connector is an elongated panel.
  • 57. The method of claim 56 wherein for each substructure member the spaced pair of nailing strips includes upper portions and lower portions, and the elongated panel is integral with the lower portions of the nailing strips.
US Referenced Citations (86)
Number Name Date Kind
274354 McCarthy et al. Mar 1883 A
498344 Williams May 1893 A
726506 Capen Apr 1903 A
802622 Van Den Bulcke Oct 1905 A
1195289 Stevens Aug 1916 A
1302578 Murphy May 1919 A
1339425 Stevens May 1920 A
1342610 Wheeler Jun 1920 A
1343234 Stevens Jun 1920 A
1350349 Walther Aug 1920 A
1491198 Cassidy Apr 1924 A
1587355 Raun Jan 1926 A
1668842 Dudfield et al. May 1928 A
1692855 Murphy Nov 1928 A
1693655 Murphy Dec 1928 A
1752583 Wright Apr 1930 A
1781117 Mackie et al. Nov 1930 A
1787067 Eisler Dec 1930 A
1832397 Hultquist Nov 1931 A
1911433 Cinnamond May 1933 A
1977496 Snyder et al. Oct 1934 A
1986739 Mitte Jan 1935 A
2035902 MacLeod Mar 1936 A
2066005 Jenkins Dec 1936 A
2114451 Mattes Apr 1938 A
2167836 Greulich Aug 1939 A
2414986 Tinnerman Jan 1947 A
2708781 McMullan May 1955 A
2862255 Nelson Dec 1958 A
2874603 Boettcher Feb 1959 A
2996160 Voight Aug 1961 A
3045294 Livezey, Jr. Jul 1962 A
3122073 Masse Feb 1964 A
3271916 Omholt Sep 1966 A
3387422 Wanzer Jun 1968 A
3398491 Babcock Aug 1968 A
3436888 Ottosson Apr 1969 A
3511001 Morgan, Jr. May 1970 A
3518800 Tank Jul 1970 A
3553910 Hordis Jan 1971 A
3553919 Omholt Jan 1971 A
3554850 Kuhle Jan 1971 A
3562990 Boettcher Feb 1971 A
3596422 Boettcher Aug 1971 A
3786608 Boettcher Jan 1974 A
3788021 Husler Jan 1974 A
3803791 Turnbull et al. Apr 1974 A
3828503 Hofmann Aug 1974 A
4170859 Counihan Oct 1979 A
4586308 Jennings May 1986 A
4599842 Counihan Jul 1986 A
4648592 Harinishi Mar 1987 A
4653246 Hepler Mar 1987 A
4703601 Abendroth Nov 1987 A
4759164 Abendroth et al. Jul 1988 A
4819932 Trotter, Jr. Apr 1989 A
4831806 Niese et al. May 1989 A
4856245 Osawa Aug 1989 A
4856250 Gronau et al. Aug 1989 A
4860516 Koller et al. Aug 1989 A
4862664 Romine Sep 1989 A
4879856 Jones et al. Nov 1989 A
4879857 Peterson et al. Nov 1989 A
4884932 Meyer Dec 1989 A
4890434 Niese Jan 1990 A
4910936 Abendroth et al. Mar 1990 A
4930280 Abendroth Jun 1990 A
4932820 Schniedermeier Jun 1990 A
5016413 Counihan May 1991 A
5359954 Kordelin Nov 1994 A
5369927 Counihan Dec 1994 A
5377471 Niese Jan 1995 A
5388380 Niese Feb 1995 A
5412917 Shelton May 1995 A
5475959 Mackenzie Dec 1995 A
5497590 Counihan Mar 1996 A
5540025 Takehara et al. Jul 1996 A
5609000 Niese Mar 1997 A
5647183 Counihan Jul 1997 A
5682724 Randjelovic Nov 1997 A
5727354 Clement Mar 1998 A
5778621 Randjelovic Jul 1998 A
5785478 Rotter Jul 1998 A
5827032 Howard Oct 1998 A
5906082 Counihan May 1999 A
6062789 Pope May 2000 A
Non-Patent Literature Citations (1)
Entry
Superior Floor Company, Inc., A Superior Performance Starts With A Superior Floor, 09550/Sup, BuyLine 3624 and 08200/GRA, BuyLine 3245, 1992, 8 pages.