The present invention relates to energy saving for Core Network (CN) in 3rd Generation (3G) networks.
Mobile coverage across the globe is growing at a rapid pace and now covers the majority of the Earth's population. With more and more people accessing the network, the power consumption created by the mobile operators may become a heavy burden to the environment and needs consideration. Energy saving equipments and mechanisms are needed to reduce the energy consumption to prevent further pollution to the environment.
A mechanism for the efficient use of mobile CNs is provided in this invention. Since the load upon mobile core networks moves according to human activities, it can easily be speculated that the CN will have a lower load during night time. By making unused nodes “sleep” during those hours, the total power consumption of the CN can be decreased.
NPL 1: 3GPP TS 23.251, “Network Sharing; Architecture and functional description (Release 10)”, V10.0.0, December 2010, pages 7-8, clause 4.1
NPL 2: 3GPP TS 23.236, “Intra-domain connection of Radio Access Network (RAN) nodes to multiple Core Network (CN) nodes (Release 10)”, V10.2.0, December 2010, page 12, clause 4.5a.1
NPL 3: GISFI, GE-20100020, “Greening the mobile core network”, December 2010
Current standards do not provide means to shutdown nodes with active calls. The mechanism may provide means to shutdown nodes with no calls, but if there are long time connections (e.g video steaming) on the node, it may take time for that node to shutdown.
This invention gives methods to solve this problem by using handover mechanisms to transfer active calls to different nodes, enabling a shorter time to sleep.
Note that as related technologies, Network Sharing is depicted in Non Patent Literature (NPL) 1. Intra-domain connection of Radio Access Network nodes to multiple Core Network nodes is depicted in NPL 2. Sleeping EPC is depicted in NPL 3.
The mobile network consumes energy even in time periods when no users or fewer users are using the network (e.g. night time). In order to cut unneeded power consumption, this invention proposes that CN nodes “sleep (shuts down or runs in a low power state)”. Here, we define a sleeping CN node for the Packet Switched (PS) network, i.e. the sleeping SGSN (Serving GPRS (General Packet Radio Service) Support Node).
There are included novelty means for SGSNs sharing their resource information by using operation and maintenance (O&M) or GPRS tunneling protocol's C-plane (GTP-C) messages, for triggering Radio Network Controller (RNC)/Base Station Controller (BSC) relocation by Power Down Notification messages, and for RNC/BSCs being able to identify resources that “relocation required”/“relocation request” were sent/received belong to the same call.
According to the present invention, the following effects can be achieved.
1. Operators will be able to shutdown or lower the power of unused network nodes. Since this will achieve lower power consumption, operators can realize an eco-friendly system.
2. Operators will be able to scale the size of their CN dynamically according to the mount of user's accessing network.
Hereafter, an exemplary embodiment of a CN node according to the present invention, and a mobile communication system to which this CN node is applied will be described with reference to the drawings. In the 3GPP based network where Iu-flex is available, a group of RAN (Radio Access Network) nodes inside a common pool-area can be connected to a group of CN nodes. Every RAN node inside the same pool-area can be controlled by any CN node looking over that pool-area. The CN nodes will not be fully operational at certain times of the day, and the total amount of unused resources in the pool-area may exceed the capacity of a CN node. In these cases a specific CN node may decide to pass its load to another CN node (an active CN node) and then shutdown or turn down the power consumption (e.g. entering a standby mode or a hibernation mode). Here, we focus on the PS network.
Before falling asleep, a “sleepy” SGSN or the operator will check the amount of open resources of other active SGSN nodes inside the same PS-pool-area (Step S101 shown in each of
Once the sleepy SGSN decides to sleep, it would declare that it is going to sleep by sending a power down notification to the connected RNC/BSC and SGSNs in the same pool (Step S103 shown in each of
Next, the sleepy SGSN would transfer its load to other SGSNs in the same PS-pool-area. There are two methods available: one would be to requesting the User Equipment (UE) to detach/attach to the network (the RNC would not re-select the sleepy SGSN from the power down notification) or re-routing the connection to a new SGSN.
After all connections has been removed from the sleepy SGSN, it can shutdown or turn to a low power mode, making it a Sleeping SGSN (Step S208). When the Sleeping SGSN by a given timer or manually by an operator, it would send power up notification messages by GTP or O&M messages to show it is online again.
Based on the above description, the following document will be submitted to Global ICT Standardization Forum for India (GISFI).
Mobile communications is a fast growing sector not only in India but the whole world. It can help bring down the Green House Gas (GHG) emission of other sectors, but will increase the amount of emission of the mobile communication sector itself along with its growth. In order to assure sustainable growth of this sector, means to alleviate GHG emissions must be proposed. This document is an update of a previous proposal GE-20100020 [1], and also focuses on the core network part of mobile communications. We propose this document to be accepted for the deliverable 2 of Green Energy activity, “Study on potential enhancements of ICT (Information and Communications Technology)”.
Utilizing ICT can be considered as an effective method to decrease the GHG emissions of other sectors (as discussed in GE-20100011 [2]). However, it is difficult for ICT to reduce GHG emissions of the ICT sector itself. Therefore, further methods to decrease GHGs must be considered for a “green” ICT. This document will focus on the core network of the mobile communication part of ICT.
According to SMART2020 [3], it is said that mobile communications will emit 201 Mega-tons of GHG into the earth's atmosphere by 2020 (see
In this document, we first discuss how the current core network is structured for 3G and LTE. Second, we discuss what elements are missing from the current networks. Finally, we propose a high level solution that will efficiently reduce the amount of GHG emission.
Before we discuss how we can reduce the amount of GHG emission for the core network, it is important to know the current architecture of the network. In this section, we will take conventional 3rd Generation networks and Long Term Evolution (LTE) networks as examples, and describe measures taken by the 3rd Generation Partnership Project (3GPP) to reduce GHG emission.
One method being standardized in 3GPP that results in a Green Core Network would be network sharing (TS 23.251 [6]). Network sharing enables different operators to share the same RAN and nodes at the edge of the core network. This reduces over lapping equipment covering the same area. It results in cutting deployment and operation costs for operators as it gives green effect in having less equipment and power consumption. However, when there already is an existing network, operators will end up throwing away their equipment. Thus this solution may only be attractive to operators when applying it for deployment in new areas.
Additional methods for saving power in the core network must also be considered. First, we will discuss the problems that cannot be solved with the current solution. Then we will elaborate on the potential solutions to cope with the problem.
The current network sharing solution given by the 3GPP is very beneficial as a method to cut equipment and operation costs. However, there are issues that still need to be handled, creating more areas where power reduction is possible. There also would be demands from standardization aspects to cope with the problem.
One significant issue would be the power used in systems that are not being used constantly throughout the day. For example, in commercial areas, the system is in its busiest state during the day time, and the network load will start decreasing after business hours. Residential areas will probably have a different peak hour, and most areas would have a significantly lower load during the smaller hours of the day.
Current systems do not change their processing capacity according to their load. They are built based on the busy hour call attempts (BHCA) and are operated so that it can process its maximum capacity during any time of the day. This leads to unneeded power consumption making its countermeasure a requirement in achieving a green core network.
In order to solve the requirement discussed in the previous section, a new solution is needed. The requirement in the last chapter was to cut power consumption when the system has smaller loads compared with its maximum capacity. Some potential solutions for cutting power consumption are: lowering CPU performance, putting the system in suspended/standby mode, and powering off the system. These apply for parts of the network not being used (in this case, the SGSN for 3G, and the MME and S-GW for LTE). However, these solutions may create communication problems when the target node is accessed from other nodes in the network. In order to power down nodes in the network, the negotiation between nodes would be crucial.
Throughout this document, we have discussed how the core network may be using power inefficiently. As the mobile industry is a fast growing sector in India, there must be measures to avoid increasing GHG emissions. We proposed a high level architecture that will help eliminate unneeded energy consumption of the core network. We propose that this document is accepted for deliverable 2 of Green Energy activity, “Study on potential enhancements of ICT”.
Next, a configuration example of the CN node according to this exemplary embodiment (i.e., the Sleeping SGSN shown in
As shown in
The sharing unit 11 shares the resource information between other SGSNs (i.e., active SGSNs), for example, by using the above-mentioned O&M or GTP-C messages. The deciding unit 12 decides whether or not to make the SGSN 10 sleep based on the resource information as described above. The notifying unit 13 transmits the power down notification to the RNC/BSC and the active SGSNs, when the SGSN 10 sleeps. The requesting unit 14 performs processing according to the above-mentioned detach/attach method. Specifically, the requesting unit 14 transmits the detach request message with the detach type which indicates “reattach required” to a UE attached to the SGSN 10 through the RNC/BSC. The requesting unit 15 performs processing according to the above-mentioned re-routing method. Specifically, the requesting unit 15 receives from the RNC/BSC the relocation message (Relocation Required message shown at Step 5201 in
These units 11 to 15 can be configured by, for example, interfaces which communicate with other SGSNs and the RNC/BSC, and a controller which controls these interfaces to execute the processes shown in
Note that the present invention is not limited to the above-mentioned exemplary embodiment, and it is obvious that various modifications can be made by those of ordinary skill in the art based on the recitation of the claims.
This application is based upon and claims the benefit of priority from Japanese patent application No. 2011-038779, filed on Feb. 24, 2011, the disclosure of which is incorporated herein in its entirety by reference.
The whole or part of the exemplary embodiment disclosed above can be described as, but not limited to, the following supplementary notes.
(Supplementary Note 1)
Methods to decide which core node should sleep
There are several ways to decide the sleeping node. An operator can decide the sleeping node by checking SGSN resources via an O&M terminal through pre-defined O&M messages. Otherwise, SGSN can check resources for themselves by checking resources through defining GTP-C or O&M messages.
(Supplementary Note 2)
Power down notification and power up notification messages
Power down/up notification messages can be sent by defining messages on the RANAP (Radio Access Network Application Part), GTP-C, and O&M messages. Power up messages can be triggered by a given timer, disasters, overload messages from other SGSNs/RNCs, or manually by an operator.
(Supplementary Note 3)
Power Down Preparation
In order for the sleepy node to power down efficiently, it will block new connections, and only accept disconnect or handover related messages. Once all the user connections are transferred or disconnected, the sleeping node will power down.
(Supplementary Note 4)
Re-use of Serving RNS (Radio Network Subsystem) relocation procedures
This procedure is different from serving RNS relocation for the source RNC and the target RNC are the same RNC. Therefore, the RNC will be able to omit unneeded inter RNC messages and prevent itself from securing unneeded resources. The RNC will he able to specify the relocation messages belong to the same call by comparing the relocation required and relocation request messages that are sent/received at the RNC.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2011-038779 | Feb 2011 | JP | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/JP2011/078636 | 12/5/2011 | WO | 00 | 8/15/2013 |