Sleeve and stud connector latch

Information

  • Patent Grant
  • 6398574
  • Patent Number
    6,398,574
  • Date Filed
    Tuesday, September 19, 2000
    24 years ago
  • Date Issued
    Tuesday, June 4, 2002
    22 years ago
Abstract
A pair of mated connector (11, 12) are latched together by a pair of studs (21) on a first connector that are inserted into a pair of sleeve assemblies (22) on the second connector, with each stud having a stud groove (40) that receives an inwardly projecting flange (32) of the sleeve assembly. The sleeve assembly includes an outer sleeve (54) with an internal sleeve groove (28), and a spring clip (23) lying in the sleeve groove. The spring clip is largely in the form of a cylinder with an axially-extending slot (31) that allows the cylinder to resiliently expand and contract. The spring clip is trapped in the sleeve groove and has an inwardly-projecting flange (32) that snaps into the stud groove when the stud is fully inserted.
Description




BACKGROUND OF THE INVENTION




One mechanism for locking together a pair of mated connectors, includes a U-shaped spring wire that can slide in openings at opposite sides of a sleeve. When a stud on the mating connector is inserted into the sleeve, the spring wire is slid down into the grooves of the studs. This approach has the disadvantage that during assembly of a connector, it is difficult to fit the spring wire into the holes in the sleeve. Also, the reliability of locking is compromised because locking is effected only at two diametrically opposite locations. An apparatus for latching a stud of one connector in a sleeve of another connector, which was easy to install even in very small connectors and which could provide latching engagement along a majority of the circumference of the stud, would be of value.




SUMMARY OF THE INVENTION




In accordance with one embodiment of the present invention, an apparatus is provided for latching a stud of one connector in a sleeve of a mating connector, which is easy to install, provides a latching surface that can extend around at least one third of a circle, provides automatic latching, and can provide simple unlatching by firmly pulling the connectors apart. The sleeve assembly that receives the stud includes an outer sleeve with an internal circumferential sleeve groove and a largely cylindrical spring clip that is trapped in the groove. The spring clip has an axial slot that allows the clip to expand and contract. The clip also has a radially inwardly-extending projection forming an internal flange. When the stud with a groove in it is inserted so the stud groove approaches the middle of the clip, the flange on the clip snaps into the stud groove to lock the stud in place. The internal flange of the spring clip has tapered front and rear surfaces, so the stud can be inserted by pushing it firmly into the sleeve and can be removed by firmly pulling it out of the sleeve.




The required insertion and pullout force can be determined, in part, by the angles of the front and rear ends of the clip inward projection. In most cases, about the same force can be used for insertion and removal, and the spring clip can be symmetric so it can be installed without paying attention as to which end is inserted first.




The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a plan view of a pair of connectors that are approaching each other to mate.





FIG. 2

is an exploded isometric view of a sleeve assembly and stud of the connectors of FIG.


1


.





FIG. 3

is a sectional view of the sleeve assembly of FIG.


2


.





FIG. 4

is a sectional view of the sleeve assembly and stud of

FIG. 2

in a fully assembled and latched configuration.











DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

shows a connector system


10


that includes first and second connectors


11


,


12


that can mate by moving them together in longitudinal directions M along their connector axes


55


,


57


. The first connector


11


, which is mounted on a circuit board


50


, includes a housing


13


for receiving contact wires which are to be connected to the circuit board, and includes a contact assembly


14


with contacts


51


that mate to contacts


53


of a corresponding contact assembly


17


in the second connector. The second connector is designed to connect to a cable


52


with wires that run through a housing


16


and connect to contacts in the contact arrangement


17


. When the connectors are mated, they are latched together by a latch assembly


20


which includes studs


21


on the first housing that enter sleeve assemblies


22


on the second housing.





FIG. 3

shows details of a sleeve assembly


22


, which includes an outer sleeve


54


and a spring clip


23


. Both the outer sleeve and the spring clip are of generally cylindrical shape, with axes lying on the sleeve assembly axis


56


. The outer sleeve has an inside wall forming an internal circumferential sleeve groove


28


with front and rear axially-spaced groove walls


60


,


62


. The spring clip is trapped in the groove. The outer sleeve has a rear end


27


that is fixed to the rest of the housing. As shown in

FIG. 2

, the spring clip


23


has a largely axially-extending slot


31


that allows the clip to expand and contract in diameter. In the undeformed configuration of the spring clip shown in

FIG. 3

, the spring clip is trapped in the groove


23


.




The clip has an inwardly-projecting latching portion or internal flange


32


which can snap into a groove


40


in one of the studs


21


. The flange has front and rear ends at


33


,


34


which are angled from a radial direction (that would be radial to the axis


56


). The front end


33


is inclined radially inwardly and rearwardly, while the rear end


34


is angled radially inwardly and forwardly. These inclines of the flange ends help to allow the stud to be pushed into and pulled out of the sleeve assembly although tapers on the stud assure this. It is preferred that the clip be symmetric about a plane


65


that is normal to the axis


56


, although the exact distance between the flange


32


and the front and rear ends is not of much importance.




As shown in

FIG. 4

, the stud


21


has a conical lead-in rear end


44


, with the groove


40


spaced a distance forward of the lead-in. When the stud is inserted into the sleeve assembly


22


, the tapered rear end


41


expands the spring clip


23


until the flange


32


snaps into the groove


40


. Thereafter, the stud is latched to the sleeve assembly, so the connectors are latched together, until the stud and sleeve assembly are forcefully pulled apart.




The groove


40


in the stud has a rear wall


43


that is beveled in a radially inward and forward direction. This helps to remove the stud from the sleeve assembly by the region


43


expanding the spring clip. The groove


40


has a radially inner wall region


44


with a rear wall that faces directly forwardly. This can be used to receive a locking device, shown at


70


in

FIG. 2

, with one or more posts


47


, to positively lock the stud in the sleeve assembly.




The force required for mating the connectors is relatively small because the stud rear end at


41


forms a relatively small angle A with the axis


56


, the particular angle A being shown to be 15°


0


, and preferably being less than 25° for easy insertion of the stud. The angle B of the clip front end


33


and of the stud groove wall


43


, is about 60°, which provides considerable resistance to pullout of the stud from the clip. The particular angle B is preferably between 30° and 70°, with resistance varying with the thickness and temper of the sheet metal of the spring clip. In this regard, it may be noted it is possible to form the spring clip as a machine part, as shown in applicant's

FIG. 2

where the internal flange


32


′ is formed by machining. However, applicant prefers to form the spring clip from the formed sheet metal, with the flange


32


shown in

FIG. 3

formed as a result of a depression at


72


in the outside of the spring clip.




It is noted that

FIG. 3

shows there is a considerable clearance C between the outside of the spring clip and the inside of the cylindrical walls


74


of the outer sleeve groove


28


. This clearance is great enough to allow the spring clip to expand as it rides over a portion


48


of the stud that is of greatest diameter and that lies rearward of the spring clip in the fully installed position of FIG.


4


. This generally requires a clearance C that is greater than the sheet metal thickness. Even in the undeformed configuration of the spring clip, shown in

FIG. 3

, the spring clip outside diameter should be greater than the inside diameter of the rear portion


76


of the outer sleeve that lies forward and rearward of its groove, to always retain the spring clip in the groove


28


. The front end of the sleeve forms a tapered lead-in


29


to center the inserted stud.





FIG. 2

shows that the slot


31


in the spring clip extends about 40° about the axis


56


. The flange


32


shown in

FIG. 3

, extends around substantially the entire spring clip, except, of course, for the slot. As a result, the flange


32


extends about 320° about the axis


56


to provide secure latching of the stud


21


in the sleeve assembly. It is possible to form the flange


32


at only perhaps three locations around the clip with the flange being interrupted. However, applicant prefers that the flange extend by at least 120° around the axis, or one third of a circle, to securely latch the inserted stud. A flange that extends at least 180° is preferred.




Thus, the invention provides a sleeve and stud latching arrangement for a connector system, which is of simple and easily installed construction. The sleeve assembly includes a sleeve with an internal groove and a spring clip lying in the groove and having an internal flange. The stud has a groove that receives the flange of the spring clip when the stud is fully inserted, to latch the stud in the sleeve assembly. The clip is preferably symmetric about its flange, to allow installation of the spring clip in either of two opposite orientations.




While most connectors would use two studs and two sleeve assemblies, it is possible to use only one of each on the connector axes.




Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.



Claims
  • 1. A second connector with at least one sleeve assembly for receiving a grooved stud of a mating first connector to lock the connectors together, wherein:said sleeve assembly includes a sleeve with an axis and with an internal sleeve groove that has front and rear groove ends and a cylindrical groove wall extending between said ends; said sleeve assembly includes a spring clip of largely cylindrical shape with radially inner and outer surfaces, said clip being trapped in said sleeve groove, and said clip having a largely axial slit that allows the clip to radially expand and contact, said clip having a projection extending radially inward from said inner surface to form an internal flange to snap into the stud groove; said sleeve groove having a radially inner side of a length at least as long as said clip, to allow the contracted clip to slide axially within said sleeve until the entire length of said clip snaps into said sleeve groove; wherein said clip lies loosely in said sleeve groove and can move freely in any direction that is radial to said sleeve axis and against said groove cylindrical walls.
  • 2. A connector system that includes first and second mateable connectors, where the second connector has at least one sleeve assembly that opens along a longitudinally-extending axis in a front direction and the first connector has at least one stud that is insertable into said sleeve as said connectors mate, wherein:said stud has an outer surface with a stud groove that extends in a circumferential direction around said axis into said outer surface; said sleeve assembly includes a sleeve with an internal groove that forms cylindrical groove walls, and said sleeve assembly includes a spring clip trapped in said groove, said clip being cylindrical with a slit that allows clip expansion and compression; said clip having front and rear ends and a radially inwardly projecting latching flange that is resiliently expandable with expansion of said clip, so said stud can be axially inserted into said clip to expand it until said flange snaps into said stud groove; said clip is free to move radially in any direction against said groove cylindrical walls, and said flange extends in a circumferential band that is spaced at a substantially constant distance from said clip ends.
  • 3. The connector system described in claim 2 wherein:said clip is formed of a piece of sheet metal with front and rear ends and with a band-like middle portion that forms said band and that has been deformed to form said flange, said band being of substantially constant cross-section as viewed in a sectional view that is taken along said axis, said clip having been rolled into a cylinder that has cylinder sides separated by said slit, said piece of sheet metal being devoid of multiple through slots to provide high holding force.
  • 4. The connector system described in claim 2 wherein:said flange extends approximately 320° about said axis.
  • 5. A connector system that includes first and second mateable connectors, where the second connector has at least one sleeve assembly that opens along a longitudinally-extending axis in a front direction and the first connector has at least one stud that is insertable into said sleeve as said connectors mate, wherein:said stud has an outer surface with a stud groove that extends in a circumferential direction around said axis into said outer surface; said sleeve assembly includes an outer sleeve with an inside wall forming a sleeve inside, said inside walls forming an internal sleeve groove with front and rear groove end walls; a spring clip in form of a cylinder with a largely axially-extending slot that allows the cylinder to resiliently expand and contract, said sleeve groove having a groove length at a radial inner part of the groove which is sufficient to allow said spring clip to radially expand into said groove after said clip is contracted in diameter and slid along said sleeve inside to said sleeve groove; said spring clip has front and rear clip ends and lies in said sleeve groove and has an undeformed outside diameter that traps said spring clip between said groove end walls; said spring clip having a radially inwardly-projecting flange that is of a radius to snap into said stud groove and thereby resist axial movement of said stud.
Priority Claims (1)
Number Date Country Kind
199 45 784 Sep 1999 DE
US Referenced Citations (4)
Number Name Date Kind
3471824 Greulich et al. Oct 1969 A
4840587 Lancella Jun 1989 A
4906211 Bell et al. Mar 1990 A
5533914 Sawada Jul 1996 A
Foreign Referenced Citations (1)
Number Date Country
2 143 434 Aug 1971 DE