Some electric machines are housed within a module housing. Some module housings includes a canister with an enclosed end and an open end, and the electric machine can be positioned inside the canister through the open end. The module housing also includes a cover that can be placed over the open end of the canister to enclose the electric machine within the canister. Some methods for cooling the electric machine can include circulating a coolant around a portion of the electric machine inside of a cooling jacket. At least a portion of the cooling jacket can be defined by at least a portion of the module housing.
Some embodiments of the invention provide an electric machine module including a module housing. The module housing can include a sleeve member coupled to at least one end cover and can define a machine cavity. In some embodiments, the sleeve member can include an inner perimeter and can be coupled to a stator assembly of an electric machine. In some embodiments, the electric machine can be positioned within the machine and at least partially enclosed by the module housing. In some embodiments, a coolant jacket can be defined by at least a portion of the sleeve member and at least a portion of the stator assembly.
Some embodiments of the invention provide an electric machine module including an electric machine. In some embodiments, the electric machine can include a stator assembly. In some embodiments, a sleeve member can be operatively coupled to at least a portion of the stator assembly. In some embodiments, at least a portion of the electric machine can be positioned within a module housing, which can include a canister coupled to at least one end cover. In some embodiments, the electric machine can be positioned substantially within the module housing so that at least a portion of the sleeve member is adjacent to at least a portion of the canister. In some embodiments, a coolant jacket can be defined between at least a portion of the sleeve member and at least a portion of the canister.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives that fall within the scope of embodiments of the invention.
The electric machine 20 can include a rotor assembly 24, a stator assembly 26, including stator end turns 28, and bearings 29, and can be disposed about an output shaft 33. As shown in
The electric machine 20 can be, without limitation, an electric motor, such as a hybrid electric motor, a starter motor, an electric generator, or a vehicle alternator. In one embodiment, the electric machine 20 can be a High Voltage Hairpin (HVH) electric motor or an interior permanent magnet electric motor for hybrid vehicle applications.
Components of the electric machine 20 such as, but not limited to, the rotor assembly 24, the stator assembly 26, and the stator end turns 28 can generate heat during operation of the electric machine 20. These components can be cooled to increase the performance and the lifespan of the electric machine 20.
In some embodiments, the sleeve member 14 can comprise a substantially annular shape and can include an inner perimeter 30 and an outer perimeter 32. In some embodiments, the sleeve member 14 can comprise other shapes such as, but not limited to, elliptical, hemispherical, regular or irregular polygonal, or any combination thereof. In some embodiments, at least a portion of the sleeve member 14 can comprise a shape substantially similar to a shape of at least a portion of the stator assembly 26. In some embodiments, the sleeve member 14 can comprise stainless steel, aluminum, cast aluminum, copper, and other materials. In some embodiments, at least a portion of the sleeve member inner perimeter 30 can be operatively coupled to an outer perimeter 34 of the stator assembly 26, so that the sleeve member 14 and the stator assembly 24 are substantially retained in a position relative to one another, as shown in
As shown in
In some embodiments, as shown in
In some embodiments, different portions of the sleeve member 14 can define at least a portion of the coolant jacket 38. For example, as previously mentioned, in some embodiments, the coolant jacket 38 can be defined by at least a portion of the sleeve member perimeter 30, as shown in
As previously mentioned, in some embodiments, the stator sleeve 14, the canister 15, and/or the additional housing 46 can comprise at least one coolant inlet to allow coolant flow into the coolant jacket 38. In some embodiments, the coolant can be directed into the coolant jacket 38 and can circulate through at least a portion of the coolant jacket 38 to remove at least a portion of the heat energy produced by the electric machine 20. For example, in some embodiments, the coolant circulating through the coolant jacket 38 can remove at least a portion of the heat energy produced by the stator assembly 26 because the coolant jacket 38 can substantially circumscribe at least a portion of the stator assembly 26.
As shown in
As shown in
In some embodiments, the coolant can exit the coolant jacket 38 and/or the machine cavity 22 through a drain 48, as shown in
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 61/345,946 filed on May 18, 2010, the entire contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3060335 | Greenwald | Oct 1962 | A |
3882334 | Newill | May 1975 | A |
4647805 | Flygare et al. | Mar 1987 | A |
4825531 | Nold | May 1989 | A |
5081382 | Collings et al. | Jan 1992 | A |
5180004 | Nguyen | Jan 1993 | A |
5207121 | Blen | May 1993 | A |
5372213 | Hasebe et al. | Dec 1994 | A |
5616973 | Khazanov et al. | Apr 1997 | A |
5798593 | Salter et al. | Aug 1998 | A |
5856716 | Coupart et al. | Jan 1999 | A |
5965965 | Umeda et al. | Oct 1999 | A |
6011332 | Umeda et al. | Jan 2000 | A |
6069424 | Colello et al. | May 2000 | A |
6087744 | Glauning | Jul 2000 | A |
6097130 | Umeda et al. | Aug 2000 | A |
6147430 | Kusase et al. | Nov 2000 | A |
6147432 | Kusase et al. | Nov 2000 | A |
6173758 | Ward et al. | Jan 2001 | B1 |
6181043 | Kusase et al. | Jan 2001 | B1 |
6208060 | Kusase et al. | Mar 2001 | B1 |
6232687 | Hollenbeck et al. | May 2001 | B1 |
6242836 | Ishida et al. | Jun 2001 | B1 |
6291918 | Umeda et al. | Sep 2001 | B1 |
6313559 | Kusase et al. | Nov 2001 | B1 |
6333573 | Nakamura | Dec 2001 | B1 |
6335583 | Kusase et al. | Jan 2002 | B1 |
6346758 | Nakamura | Feb 2002 | B1 |
6404628 | Nagashima et al. | Jun 2002 | B1 |
6417592 | Nakamura et al. | Jul 2002 | B2 |
6459177 | Nakamura et al. | Oct 2002 | B1 |
6515392 | Ooiwa | Feb 2003 | B2 |
6522043 | Measegi | Feb 2003 | B2 |
6559572 | Nakamura | May 2003 | B2 |
6579202 | El-Antably et al. | Jun 2003 | B2 |
6617715 | Harris et al. | Sep 2003 | B1 |
6770999 | Sakurai | Aug 2004 | B2 |
6897594 | Ichikawa et al. | May 2005 | B2 |
6998749 | Wada et al. | Feb 2006 | B2 |
7002267 | Raszkowski et al. | Feb 2006 | B2 |
7239055 | Burgman et al. | Jul 2007 | B2 |
7276006 | Reed et al. | Oct 2007 | B2 |
7284313 | Raszkowski et al. | Oct 2007 | B2 |
7339300 | Burgman et al. | Mar 2008 | B2 |
7352091 | Bradfield | Apr 2008 | B2 |
7417344 | Bradfield | Aug 2008 | B2 |
7508100 | Foster | Mar 2009 | B2 |
7508101 | Kaminski et al. | Mar 2009 | B2 |
7538457 | Holmes et al. | May 2009 | B2 |
7545060 | Ward | Jun 2009 | B2 |
7615903 | Holmes et al. | Nov 2009 | B2 |
7615951 | Son et al. | Nov 2009 | B2 |
7667359 | Lee et al. | Feb 2010 | B2 |
20030193260 | Reiter, Jr. et al. | Oct 2003 | A1 |
20040036367 | Denton et al. | Feb 2004 | A1 |
20040195929 | Oshidari | Oct 2004 | A1 |
20050023909 | Cromas | Feb 2005 | A1 |
20070200438 | Kaminski et al. | Aug 2007 | A1 |
20070216236 | Ward | Sep 2007 | A1 |
20080168796 | Masoudipour et al. | Jul 2008 | A1 |
20090267426 | Graner et al. | Oct 2009 | A1 |
20100261575 | Schoenek | Oct 2010 | A1 |
20100283334 | Lemmers, Jr. et al. | Nov 2010 | A1 |
20110285222 | Chamberlin et al. | Nov 2011 | A1 |
Entry |
---|
International Search Report, Received Feb. 16, 2012. |
Number | Date | Country | |
---|---|---|---|
20110285222 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
61345946 | May 2010 | US |