Slew control for variable load pulse-width modulation driver and load sensing

Information

  • Patent Grant
  • 11854738
  • Patent Number
    11,854,738
  • Date Filed
    Thursday, December 2, 2021
    2 years ago
  • Date Issued
    Tuesday, December 26, 2023
    4 months ago
Abstract
A system may include an electromagnetic load, a driver configured to drive the electromagnetic load with a driving signal, and a processing system communicatively coupled to the electromagnetic load and configured to, during a haptic mode of the system couple a first terminal of the electromagnetic load to a ground voltage and cause the driving signal to have a first slew rate, and during a load sensing mode of the system for sensing a current associated with the electromagnetic load, couple the first terminal to a current-sensing circuit having a sense resistor coupled between the first terminal and an electrical node driven to a common-mode voltage and cause the driving signal to have a second slew rate lower than the first slew rate.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to methods, apparatuses, or implementations for haptic devices. Embodiments set forth herein may disclose improvements relating to how a physical quantity, such as inductance or displacement, of a haptic actuator or other electromechanical load may be sensed.


BACKGROUND

Vibro-haptic transducers, for example linear resonant actuators (LRAs), are widely used in portable devices such as mobile phones to generate vibrational feedback to a user. Vibro-haptic feedback in various forms creates different feelings of touch to a user's skin and may play increasing roles in human-machine interactions for modern devices.


An LRA may be modelled as a mass-spring electro-mechanical vibration system. When driven with appropriately designed or controlled driving signals, an LRA may generate certain desired forms of vibrations. For example, a sharp and clear-cut vibration pattern on a user's finger may be used to create a sensation that mimics a mechanical button click. This clear-cut vibration may then be used as a virtual switch to replace mechanical buttons.



FIG. 1 illustrates an example of a vibro-haptic system in a device 100. Device 100 may comprise a controller 101 configured to control a signal applied to an amplifier 102. Amplifier 102 may then drive a vibrational actuator (e.g., haptic transducer) 103 based on the signal. Controller 101 may be triggered by a trigger to output to the signal. The trigger may, for example, comprise a pressure or force sensor on a screen or virtual button of device 100.


Among the various forms of vibro-haptic feedback, tonal vibrations of sustained duration may play an important role to notify the user of the device of certain predefined events, such as incoming calls or messages, emergency alerts, and timer warnings, etc. In order to generate tonal vibration notifications efficiently, it may be desirable to operate the haptic actuator at its resonance frequency.


The resonance frequency f0 of a haptic transducer may be approximately estimated as:










f
0

=

1

2

π


CM







(
1
)








where C is the compliance of the spring system, and M is the equivalent moving mass, which may be determined based on both the actual moving part in the haptic transducer and the mass of the portable device holding the haptic transducer.


Due to sample-to-sample variations in individual haptic transducers, mobile device assembly variations, temporal component changes caused by aging, and use conditions such as various different strengths of a user gripping of the device, the vibration resonance of the haptic transducer may vary from time to time.



FIG. 2 illustrates an example of a linear resonant actuator (LRA) modelled as a linear system. LRAs are non-linear components that may behave differently depending on, for example, the voltage levels applied, the operating temperature, and the frequency of operation. However, these components may be modelled as linear components within certain conditions. In this example, the LRA is modelled as a third order system having electrical and mechanical elements. In particular, Re and Le are the DC resistance and coil inductance of the coil-magnet system, respectively; and Bl is the magnetic force factor of the coil. The driving amplifier outputs the voltage waveform V (t) with the output impedance Ro. The terminal voltage VT(t) may be sensed across the terminals of the haptic transducer. The mass-spring system 201 moves with velocity u(t).


A haptic system may require precise control of movements of the haptic transducer. Such control may rely on the magnetic force factor Bl, which may also be known as the electromagnetic transfer function of the haptic transducer. In an ideal case, magnetic force factor Bl can be given by the product B·l, where B is magnetic flux density and l is a total length of electrical conductor within a magnetic field. Both magnetic flux density B and length l should remain constant in an ideal case with motion occurring along a single axis.


In generating haptic vibration, an LRA may undergo displacement. In order to protect an LRA from damage, such displacement may be limited. Accordingly, accurate measurement of displacement may be crucial in optimizing LRA displacement protection algorithms Accurate measurement of displacement may also enable increased drive levels of the LRA. While existing approaches measure displacement, such approaches have disadvantages. For example, displacement may be measured using a Hall sensor, but Hall sensors are often costly to implement.


SUMMARY

In accordance with the teachings of the present disclosure, the disadvantages and problems associated with existing approaches for sensing displacement of an electromagnetic transducer may be reduced or eliminated.


In accordance with embodiments of the present disclosure, a system may include an electromagnetic load, a driver configured to drive the electromagnetic load with a driving signal, and a processing system communicatively coupled to the electromagnetic load and configured to, during a haptic mode of the system, couple a first terminal of the electromagnetic load to a ground voltage and cause the driving signal to have a first slew rate, and during a load sensing mode of the system for sensing a current associated with the electromagnetic load, couple the first terminal to a current-sensing circuit having a sense resistor coupled between the first terminal and an electrical node driven to a common-mode voltage and cause the driving signal to have a second slew rate lower than the first slew rate.


In accordance with these and other embodiments of the present disclosure, a method may include, during a haptic mode of a system comprising an electromagnetic load and a driver configured to drive the electromagnetic load with a driving signal, coupling a first terminal of the electromagnetic load to a ground voltage and causing the driving signal to have a first slew rate, and during a load sensing mode of the system for sensing a current associated with the electromagnetic load, coupling the first terminal to a current-sensing circuit having a sense resistor coupled between the first terminal and an electrical node driven to a common-mode voltage and causing the driving signal to have a second slew rate lower than the first slew rate.


In accordance with these and other embodiments of the present disclosure, a processing system may include an output for causing a driver to drive an electromagnetic load with a driving signal, an input for sensing a current associated with the electromagnetic load, and logic configured to, during a haptic mode of a system comprising an electromagnetic load and a driver configured to drive the electromagnetic load with a driving signal, couple a first terminal of the electromagnetic load to a ground voltage and cause the driving signal to have a first slew rate, and during a load sensing mode of the system for sensing the current associated with the electromagnetic load, couple the first terminal to a current-sensing circuit having a sense resistor coupled between the first terminal and an electrical node driven to a common-mode voltage and cause the driving signal to have a second slew rate lower than the first slew rate.


Technical advantages of the present disclosure may be readily apparent to one having ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1 illustrates an example of a vibro-haptic system in a device, as is known in the art;



FIG. 2 illustrates an example of a Linear Resonant Actuator (LRA) modelled as a linear system, as is known in the art;



FIG. 3 illustrates selected components of an example host device, in accordance with embodiments of the present disclosure;



FIG. 4 illustrates waveforms of example control signals for controlling driving signal slew rates between operational modes, in accordance with embodiments of the present disclosure; and



FIG. 5 illustrates waveforms of example control signals for controlling driving signal strength between operational modes, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

The description below sets forth example embodiments according to this disclosure. Further example embodiments and implementations will be apparent to those having ordinary skill in the art. Further, those having ordinary skill in the art will recognize that various equivalent techniques may be applied in lieu of, or in conjunction with, the embodiment discussed below, and all such equivalents should be deemed as being encompassed by the present disclosure.


Various electronic devices or smart devices may have transducers, speakers, and acoustic output transducers, for example any transducer for converting a suitable electrical driving signal into an acoustic output such as a sonic pressure wave or mechanical vibration. For example, many electronic devices may include one or more speakers or loudspeakers for sound generation, for example, for playback of audio content, voice communications and/or for providing audible notifications.


Such speakers or loudspeakers may comprise an electromagnetic actuator, for example a voice coil motor, which is mechanically coupled to a flexible diaphragm, for example a conventional loudspeaker cone, or which is mechanically coupled to a surface of a device, for example the glass screen of a mobile device. Some electronic devices may also include acoustic output transducers capable of generating ultrasonic waves, for example for use in proximity detection-type applications and/or machine-to-machine communication.


Many electronic devices may additionally or alternatively include more specialized acoustic output transducers, for example, haptic transducers, tailored for generating vibrations for haptic control feedback or notifications to a user. Additionally or alternatively, an electronic device may have a connector, e.g., a socket, for making a removable mating connection with a corresponding connector of an accessory apparatus, and may be arranged to provide a driving signal to the connector so as to drive a transducer, of one or more of the types mentioned above, of the accessory apparatus when connected. Such an electronic device will thus comprise driving circuitry for driving the transducer of the host device or connected accessory with a suitable driving signal. For acoustic or haptic transducers, the driving signal may generally be an analog time varying voltage signal, for example, a time varying waveform.


To accurately sense displacement of an electromagnetic load, methods and systems of the present disclosure may determine an inductance of the electromagnetic load, and then convert the inductance to a position signal, as described in greater detail below. Further, to measure inductance of an electromagnetic load, methods and systems of the present disclosure may utilize either a phase measurement approach and/or a high-frequency pilot-tone driven approach, as also described in greater detail below.


To illustrate, an electromagnetic load may be driven by a driving signal V(t) to generate a sensed terminal voltage VT(t) across a coil of the electromagnetic load. Sensed terminal voltage VT(t) may be given by:

VT(t)=ZCOILI(t)+VB(t)

wherein I(t) is a sensed current through the electromagnetic load, ZCOIL, is an impedance of the electromagnetic load, and VB(t) is the back-electromotive force (back-EMF) associated with the electromagnetic load.


As used herein, to “drive” an electromagnetic load means to generate and communicate a driving signal to the electromagnetic load to cause displacement of a movable mass of the electromagnetic load.


Because back-EMF voltage VB(t) may be proportional to velocity of the moving mass of the electromagnetic load, back-EMF voltage VB(t) may in turn provide an estimate of such velocity. Thus, velocity of the moving mass may be recovered from sensed terminal voltage VT(t) and sensed current I(t) provided that either: (a) sensed current I(t) is equal to zero, in which case VB=VT(t); or (b) coil impedance ZCOIL is known or is accurately estimated.


Position of the moving mass may be related to a coil inductance LCOIL of the electromagnetic load. At high frequencies significantly above the bandwidth of the electromagnetic load, back-EMF voltage VB(t) may become negligible and inductance may dominate the coil impedance ZCOIL Sensed terminal voltage VT@HF(t) at high frequencies may be estimated by:

VT@HF(t)=ZCOILI@HF(t)


Hence, at high frequencies, the position of the moving mass of the electromagnetic load may be recovered from sensed terminal voltage VT(t) and sensed current I(t) by: (a) estimating the coil impedance at high frequency as ZCOIL@HF≅R@HF+L@HF·s, where R@HF is the resistive part of the coil impedance at high frequency, L@HF is the coil inductance at high frequency, and s is the Laplace transform; and (b) converting the measured inductance to a position signal. Velocity and/or position may be used to control vibration of the moving mass of the electromagnetic load.



FIG. 3 illustrates selected components of an example host device 300 having an electromagnetic load 301, in accordance with embodiments of the present disclosure. Host device 300 may include, without limitation, a mobile device, home application, vehicle, and/or any other system, device, or apparatus that includes a human-machine interface. Electromagnetic load 301 may include any suitable load with a complex impedance, including without limitation a haptic transducer, a loudspeaker, a microspeaker, a piezoelectric transducer, a voice-coil actuator, a solenoid, or other suitable transducer.


In operation, a signal generator 324 of a processing subsystem 305 of host device 300 may generate a raw transducer driving signal x′(t) (which, in some embodiments, may be a waveform signal, such as a haptic waveform signal or audio signal). Raw transducer driving signal x′(t) may be generated based on a desired playback waveform received by signal generator 324. In some embodiments, raw transducer driving signal x′(t) may comprise a differential pulse-width modulated (PWM) signal.


Raw transducer driving signal x′(t) may be received by waveform preprocessor 326 which, as described in greater detail below, may modify or otherwise convert raw transducer driving signal x′(t) in order to generate processed transducer driving signal x(t). For example, waveform processor 326 may include a PWM modulator 328 and non-overlap and slew controller 330. PWM modulator 328 may include any suitable device, system, or apparatus configured to generate a single-ended PWM signal from raw transducer driving signal x′ (t). For example, PWM modulator 328 may include a delta-sigma modulator comprising one or more integrator stages, a quantizer, and a conversion block configured to convert a differential signal into a single-ended signal. Accordingly, processed transducer driving signal x(t) may comprise a single-ended signal (e.g., a single-ended PWM signal) communicated to amplifier 306.


Processed transducer driving signal x(t) may in turn be amplified by amplifier 306 to generate a driving signal V (t) for driving electromagnetic load 301. Amplifier 306 may comprise a single-ended Class-D output stage (e.g., one half of an H-bridge). Responsive to driving signal V(t), a sensed terminal voltage VT(t) of electromagnetic load 301 may be sensed by a terminal voltage sensing block 307 of processing subsystem 305, for example a volt-meter, and converted to a digital representation by a first analog-to-digital converter (ADC) 303. As shown in FIG. 3, a feedback resistor 316 coupled to a terminal of electromagnetic load 301 may provide closed-loop feedback to the generation of processed transducer driving signal x(t).


Similarly, sensed current I(t) may be converted to a digital representation by a second ADC 304. Current I(t) may be sensed across a shunt resistor 302 having resistance Rs coupled to a terminal of electromagnetic load 301. As shown in FIG. 3, ADC 304 and shunt resistor 302 may be part of a current-sensing circuit including a ground-return transistor 312 and a common-mode buffer 314. During a haptics mode, when waveform preprocessor 326 drives a haptic waveform as processed transducer driving signal x(t), ground return transistor 312 may be enabled (e.g., on, closed, activated) and common-mode buffer 314 may be disabled (e.g., off, deactivated), thus coupling a terminal of electromagnetic load 301 to ground. On the other hand, during a load sensing mode, ground return transistor 312 may be disabled and common-mode buffer 314 may be enabled, thus coupling the same terminal of electromagnetic load 301 to a common-mode voltage VCM. In the load sensing mode, waveform preprocessor 326 may drive a pilot tone or other signal suitable for measuring driving signal V(t) and sensed current I(t) in order to determine an impedance (e.g., resistance and inductance) of electromagnetic load 301, wherein a component of such impedance (e.g., inductance) may be representative of a displacement of electromagnetic load 301.


As shown in FIG. 3, processing subsystem 305 may include an inductance measurement subsystem 308 that may estimate coil inductance LCOIL, of electromagnetic load 301. From such estimated coil inductance LCOIL, inductance measurement subsystem 308 may determine a displacement associated with electromagnetic load 301. If such displacement exceeds a threshold, high-frequency pilot-tone driven inductance measurement subsystem 308 may communicate a limiting signal (indicated by “LIMIT” in FIG. 3) to modify raw transducer driving signal x′ (t) in a manner that prevents over-excursion in the displacement of electromagnetic load 301.


In operation, to estimate impedance ZCOIL, inductance measurement subsystem 308 may measure impedance in any suitable manner, including without limitation using the approaches set forth in U.S. patent application Ser. No. 17/497,110 filed Oct. 8, 2021, which is incorporated in its entirety by reference herein.


One disadvantage of the architecture depicted in FIG. 3 stems from the presence of the current measurement circuit of processing subsystem 305. To illustrate, ground return transistor 312 may use a medium-level voltage to maximize efficiency in the haptics mode while using minimal physical circuit area. Further, during the load sensing mode, common-mode voltage VCM may be required to remain below the time-dependent dielectric breakdown limit of the drain-to-source voltage of ground return transistor 312. In addition, due to the PWM nature of the waveform at the terminal of electromagnetic load 301 coupled to amplifier 306, some voltage ripple may be present on the terminal of electromagnetic load 301 coupled to ground return transistor 312 and at the output of common-mode buffer 314 due to the finite bandwidth of common-mode buffer 314. In some cases, extreme ripple may result due to the variable nature of electromagnetic load 301.


For example, with an example scenario in which common-mode voltage VCM is 4.5 V, an ideal bandwidth of common-mode buffer 314 is 10 MHz, and shunt resistor 302 has resistance RS of 150Ω, the terminal of electromagnetic load 301 coupled to ground return transistor 312 may swing wildly between 0 V and 9 V, potentially leading to an unreliability of ground return transistor 312 and in input terminal pair of common-mode buffer 314. Further, if the output of common-mode buffer 314 were to become negative, common-mode buffer 314 may not be able to effectively provide voltage regulation.


To overcome such disadvantages, in operation, non-overlap and slew controller 330 may be configured to drive processed transducer driving signal x(t) at a higher slew rate in the haptics mode than at which it drives processed transducer driving signal x(t) in the load sensing mode, as shown in FIG. 4. For example, as shown in FIG. 4, when the haptics mode is enabled (and thus, the load sensing mode is disabled), a driver slew code used by non-overlap and slew controller 330 may be set to a default value. Such default value may be selected to be a maximum possible slew rate for maximizing efficiency while meeting electromagnetic emission requirements during the haptics mode. However, during the load sensing mode, efficiency may not be a concern, and accordingly, when the haptics mode is disabled (and thus, the load sensing mode is enabled), a driver slew code used by non-overlap and slew controller 330 may be set to a minimum value or some other value significantly lower than the default value.


In addition or alternatively, to overcome such disadvantages, the same or a similar result to controlling slew rate may be obtained by changing the drive strength of amplifier 306 between the haptics mode and the load sensing mode. For example, as shown in FIG. 5, when the haptics mode is enabled (and thus, the load sensing mode is disabled), amplifier 306 may be configured to strongly drive driving signal V(t). On the other hand, when the haptics mode is disabled (and thus, the load sensing mode is enabled), amplifier 306 may be configured to weakly drive driving signal V(t) at a drive strength lower than that used during the haptics mode.


As used herein, when two or more elements are referred to as “coupled” to one another, such term indicates that such two or more elements are in electronic communication or mechanical communication, as applicable, whether connected indirectly or directly, with or without intervening elements.


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Accordingly, modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses disclosed herein may be performed by more, fewer, or other components and the methods described may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order. As used in this document, “each” refers to each member of a set or each member of a subset of a set.


Although exemplary embodiments are illustrated in the figures and described below, the principles of the present disclosure may be implemented using any number of techniques, whether currently known or not. The present disclosure should in no way be limited to the exemplary implementations and techniques illustrated in the drawings and described above.


Unless otherwise specifically noted, articles depicted in the drawings are not necessarily drawn to scale.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the disclosure and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present disclosure have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.


Although specific advantages have been enumerated above, various embodiments may include some, none, or all of the enumerated advantages. Additionally, other technical advantages may become readily apparent to one of ordinary skill in the art after review of the foregoing figures and description.


To aid the Patent Office and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims or claim elements to invoke 35 U.S.C. § 112(f) unless the words “means for” or “step for” are explicitly used in the particular claim.

Claims
  • 1. A system comprising: an electromagnetic load;a driver configured to drive the electromagnetic load with a driving signal; anda processing system communicatively coupled to the electromagnetic load and configured to: during a haptic mode of the system: couple a first terminal of the electromagnetic load to a ground voltage; andcause the driving signal to have a first slew rate; andduring a load sensing mode of the system for sensing a current associated with the electromagnetic load: couple the first terminal to a current-sensing circuit having a sense resistor coupled between the first terminal and an electrical node driven to a common-mode voltage; andcause the driving signal to have a second slew rate lower than the first slew rate.
  • 2. The system of claim 1, wherein the driving signal is a pulse-width modulated signal.
  • 3. The system of claim 1, wherein the processing system comprises a switch coupled between the first terminal and the ground voltage in order to couple the first terminal to the ground voltage.
  • 4. The system of claim 1, wherein the processing system is configured to control slew rates of the driving signal by controlling slew rates of a signal received by an input of the driver.
  • 5. The system of claim 1, wherein the processing system is configured to control slew rates of the driving signal by controlling a drive strength of the driver.
  • 6. The system of claim 1, wherein the processing system further comprises a buffer coupled by its output to the electrical node in order to generate the common-mode voltage at the electrical node.
  • 7. A method, comprising: during a haptic mode of a system comprising an electromagnetic load and a driver configured to drive the electromagnetic load with a driving signal: coupling a first terminal of the electromagnetic load to a ground voltage; andcausing the driving signal to have a first slew rate; andduring a load sensing mode of the system for sensing a current associated with the electromagnetic load: coupling the first terminal to a current-sensing circuit having a sense resistor coupled between the first terminal and an electrical node driven to a common-mode voltage; andcausing the driving signal to have a second slew rate lower than the first slew rate.
  • 8. The method of claim 7, wherein the driving signal is a pulse-width modulated signal.
  • 9. The method of claim 7, further comprising coupling the first terminal to the ground voltage via a switch coupled between the first terminal and the ground voltage.
  • 10. The method of claim 7, further comprising controlling slew rates of the driving signal by controlling slew rates of a signal received by an input of the driver.
  • 11. The method of claim 7, further comprising controlling slew rates of the driving signal by controlling a drive strength of the driver.
  • 12. The method of claim 7, further comprising generating the common-mode voltage at the electrical node with a buffer coupled by its output to the electrical node.
  • 13. A processing system, comprising: an output for causing a driver to drive an electromagnetic load with a driving signal;an input for sensing a current associated with the electromagnetic load; andlogic configured to: during a haptic mode of a system comprising an electromagnetic load and a driver configured to drive the electromagnetic load with a driving signal: couple a first terminal of the electromagnetic load to a ground voltage; andcause the driving signal to have a first slew rate; andduring a load sensing mode of the system for sensing the current associated with the electromagnetic load: couple the first terminal to a current-sensing circuit having a sense resistor coupled between the first terminal and an electrical node driven to a common-mode voltage; andcause the driving signal to have a second slew rate lower than the first slew rate.
  • 14. The processing system of claim 13, wherein the driving signal is a pulse-width modulated signal.
  • 15. The processing system of claim 13, the logic further configured to couple the first terminal to the ground voltage via a switch coupled between the first terminal and the ground voltage.
  • 16. The processing system of claim 13, the logic further configured to control slew rates of the driving signal by controlling slew rates of a signal received by an input of the driver.
  • 17. The processing system of claim 13, the logic further configured to control slew rates of the driving signal by controlling a drive strength of the driver.
  • 18. The processing system of claim 13, the logic further configured to generate the common-mode voltage at the electrical node with a buffer coupled by its output to the electrical node.
US Referenced Citations (206)
Number Name Date Kind
4268822 Olsen May 1981 A
4888554 Hyde et al. Dec 1989 A
5286941 Bel Feb 1994 A
5361184 El-Sharkawi et al. Nov 1994 A
5567920 Watanabe et al. Oct 1996 A
5661269 Fukuzaki et al. Aug 1997 A
5715529 Kianush et al. Feb 1998 A
5898136 Katsurahira Apr 1999 A
6231520 Maezawa May 2001 B1
6283859 Carlson et al. Sep 2001 B1
6380923 Fukumoto et al. Apr 2002 B1
6473708 Watkins et al. Oct 2002 B1
7173410 Pond Feb 2007 B1
7965276 Martin et al. Jun 2011 B1
8144126 Wright Mar 2012 B2
8174352 Parpia et al. May 2012 B2
8346487 Wright et al. Jan 2013 B2
8384378 Feldkamp et al. Feb 2013 B2
8421446 Straubinger et al. Apr 2013 B2
8428889 Wright Apr 2013 B2
8457915 White et al. Jun 2013 B2
8674950 Olson Mar 2014 B2
8970230 Narayanasamy et al. Mar 2015 B2
9070856 Rose et al. Jun 2015 B1
9164605 Pirogov et al. Oct 2015 B1
9707502 Bonifas et al. Jul 2017 B1
10168855 Baughman et al. Jan 2019 B2
10372328 Zhai Aug 2019 B2
10571307 Acker Feb 2020 B2
10599247 Winokur et al. Mar 2020 B2
10624691 Wiender et al. Apr 2020 B2
10642435 Maru et al. May 2020 B2
10725549 Marijanovic et al. Jul 2020 B2
10726715 Hwang et al. Jul 2020 B2
10795518 Kuan et al. Oct 2020 B2
10860202 Sepehr et al. Dec 2020 B2
10866677 Haraikawa Dec 2020 B2
10908200 You et al. Feb 2021 B2
10921159 Das et al. Feb 2021 B1
10935620 Das et al. Mar 2021 B2
10942610 Maru et al. Mar 2021 B2
10948313 Kost et al. Mar 2021 B2
11079874 Lapointe et al. Aug 2021 B2
11092657 Maru et al. Aug 2021 B2
11204670 Maru et al. Dec 2021 B2
11294503 Westerman Apr 2022 B2
11507199 Melanson Nov 2022 B2
11537242 Das et al. Dec 2022 B2
11579030 Li et al. Feb 2023 B2
20010045941 Rosenberg et al. Nov 2001 A1
20030038624 Hilliard et al. Feb 2003 A1
20050192727 Shostak et al. Sep 2005 A1
20050258826 Kano et al. Nov 2005 A1
20050283330 Laraia et al. Dec 2005 A1
20060025897 Shostak et al. Feb 2006 A1
20060293864 Soss Dec 2006 A1
20070047634 Kang et al. Mar 2007 A1
20070080680 Schroeder et al. Apr 2007 A1
20070198926 Joguet et al. Aug 2007 A1
20070268265 XiaoPing Nov 2007 A1
20070296593 Hall et al. Dec 2007 A1
20070296709 GuangHai Dec 2007 A1
20080007534 Peng et al. Jan 2008 A1
20080024456 Peng et al. Jan 2008 A1
20080088594 Liu et al. Apr 2008 A1
20080088595 Liu et al. Apr 2008 A1
20080099629 Abel May 2008 A1
20080142352 Wright Jun 2008 A1
20080143681 XiaoPing Jun 2008 A1
20080150905 Grivna et al. Jun 2008 A1
20080158185 Westerman Jul 2008 A1
20090008161 Jones et al. Jan 2009 A1
20090058430 Zhu Mar 2009 A1
20090140728 Rollins et al. Jun 2009 A1
20090251216 Giotta et al. Oct 2009 A1
20090278685 Potyrailo et al. Nov 2009 A1
20090302868 Feucht et al. Dec 2009 A1
20090308155 Zhang Dec 2009 A1
20100019777 Balslink Jan 2010 A1
20100045360 Howard et al. Feb 2010 A1
20100114505 Wang et al. May 2010 A1
20100153845 Gregorio et al. Jun 2010 A1
20100211902 Unsworth et al. Aug 2010 A1
20100231239 Tateishi et al. Sep 2010 A1
20100238121 Ely Sep 2010 A1
20100328249 Ningrat et al. Dec 2010 A1
20110005090 Lee et al. Jan 2011 A1
20110214481 Kachanov et al. Sep 2011 A1
20110216311 Kachanov et al. Sep 2011 A1
20110267302 Fasshauer Nov 2011 A1
20110285667 Poupyrev et al. Nov 2011 A1
20110291821 Chung Dec 2011 A1
20110301876 Yamashita Dec 2011 A1
20130018489 Grunthaner et al. Jan 2013 A1
20130076374 Huang Mar 2013 A1
20130106756 Kono et al. May 2013 A1
20130106769 Bakken et al. May 2013 A1
20130269446 Fukushima et al. Oct 2013 A1
20140002113 Schediwy et al. Jan 2014 A1
20140028327 Potyrailo et al. Jan 2014 A1
20140137585 Lu et al. May 2014 A1
20140225599 Hess Aug 2014 A1
20140253107 Roach et al. Sep 2014 A1
20140267065 Levesque Sep 2014 A1
20140278173 Elia et al. Sep 2014 A1
20150022174 Nikitin Jan 2015 A1
20150027139 Lin et al. Jan 2015 A1
20150077094 Baldwin et al. Mar 2015 A1
20150084874 Cheng et al. Mar 2015 A1
20150109243 Jun et al. Apr 2015 A1
20150205357 Virtanen Jul 2015 A1
20150293695 Schonleben et al. Oct 2015 A1
20150329199 Golborne et al. Nov 2015 A1
20150355043 Steeneken et al. Dec 2015 A1
20160018940 Lo et al. Jan 2016 A1
20160048256 Day Feb 2016 A1
20160117084 Ording Apr 2016 A1
20160162031 Westerman et al. Jun 2016 A1
20160169717 Zhitomirsky Jun 2016 A1
20160179243 Schwartz Jun 2016 A1
20160231860 Elia Aug 2016 A1
20160231874 Baughman et al. Aug 2016 A1
20160241227 Hirata Aug 2016 A1
20160252403 Murakami Sep 2016 A1
20160357296 Picciotto et al. Dec 2016 A1
20170077735 Leabman Mar 2017 A1
20170093222 Joye et al. Mar 2017 A1
20170097437 Widmer et al. Apr 2017 A1
20170140644 Hwang et al. May 2017 A1
20170147068 Yamazaki et al. May 2017 A1
20170168578 Tsukamoto et al. Jun 2017 A1
20170169674 Macours Jun 2017 A1
20170184416 Kohlenberg et al. Jun 2017 A1
20170185173 Ito et al. Jun 2017 A1
20170187541 Sundaresan et al. Jun 2017 A1
20170237293 Faraone et al. Aug 2017 A1
20170242505 Vandermeijden et al. Aug 2017 A1
20170282715 Fung et al. Oct 2017 A1
20170315653 Vandermeijden et al. Nov 2017 A1
20170322643 Eguchi Nov 2017 A1
20170328740 Widmer et al. Nov 2017 A1
20170371380 Oberhauser et al. Dec 2017 A1
20170371381 Liu Dec 2017 A1
20170371473 David et al. Dec 2017 A1
20180019722 Birkbeck Jan 2018 A1
20180020288 Risbo et al. Jan 2018 A1
20180039331 Warren Feb 2018 A1
20180055448 Karakaya et al. Mar 2018 A1
20180059793 Hajati Mar 2018 A1
20180067601 Winokur et al. Mar 2018 A1
20180088064 Potyrailo et al. Mar 2018 A1
20180088702 Schutzberg et al. Mar 2018 A1
20180097475 Djahanshahi et al. Apr 2018 A1
20180135409 Wilson et al. May 2018 A1
20180182212 Li et al. Jun 2018 A1
20180183372 Li et al. Jun 2018 A1
20180189647 Calvo et al. Jul 2018 A1
20180195881 Acker Jul 2018 A1
20180221796 Bonifas et al. Aug 2018 A1
20180229161 Maki et al. Aug 2018 A1
20180231485 Potyrailo et al. Aug 2018 A1
20180260049 O'Lionaird et al. Sep 2018 A1
20180260050 Unseld et al. Sep 2018 A1
20180321748 Rao et al. Nov 2018 A1
20180364731 Liu et al. Dec 2018 A1
20190052045 Metzger et al. Feb 2019 A1
20190179146 De Nardi Jun 2019 A1
20190197218 Schwartz Jun 2019 A1
20190204929 Attari et al. Jul 2019 A1
20190235629 Hu et al. Aug 2019 A1
20190286263 Bagheri et al. Sep 2019 A1
20190302161 You et al. Oct 2019 A1
20190302193 Maru et al. Oct 2019 A1
20190302890 Marijanovic et al. Oct 2019 A1
20190302922 Das et al. Oct 2019 A1
20190302923 Maru et al. Oct 2019 A1
20190326906 Camacho Cardenas et al. Oct 2019 A1
20190339313 Vandermeijden Nov 2019 A1
20190377468 Micci et al. Dec 2019 A1
20200064952 Siemieniec et al. Jan 2020 A1
20200064160 Maru et al. Feb 2020 A1
20200133455 Sepehr et al. Apr 2020 A1
20200177290 Reimer et al. Jun 2020 A1
20200191761 Potyrailo et al. Jun 2020 A1
20200271477 Kost et al. Aug 2020 A1
20200271706 Wardlaw et al. Aug 2020 A1
20200271745 Das et al. Aug 2020 A1
20200272301 Duewer et al. Aug 2020 A1
20200319237 Maru et al. Oct 2020 A1
20200320966 Clark et al. Oct 2020 A1
20200373923 Walsh et al. Nov 2020 A1
20200382113 Beardsworth et al. Dec 2020 A1
20200386804 Das et al. Dec 2020 A1
20210064137 Wopat et al. Mar 2021 A1
20210074460 Sen Mar 2021 A1
20210140797 Kost et al. May 2021 A1
20210149538 Lapointe et al. May 2021 A1
20210152174 Yancey et al. May 2021 A1
20210361940 Yeh et al. Nov 2021 A1
20210396610 Li et al. Dec 2021 A1
20210404901 Kost et al. Dec 2021 A1
20220075500 Chang et al. Mar 2022 A1
20220268233 Kennedy Aug 2022 A1
20220307867 Das et al. Sep 2022 A1
20220308000 Das et al. Sep 2022 A1
20220404409 Maru et al. Dec 2022 A1
Foreign Referenced Citations (24)
Number Date Country
10542884 Mar 2016 CN
106471708 Mar 2017 CN
107076623 Aug 2017 CN
209069345 Jul 2019 CN
110609610 Dec 2019 CN
4004450 Aug 1991 DE
602004005672 Dec 2007 DE
102015215330 Feb 2017 DE
102015215331 Feb 2017 DE
1697710 Apr 2007 EP
2682843 Jan 2014 EP
2394295 Apr 2004 GB
2573644 Nov 2019 GB
2582065 Sep 2020 GB
2582864 Oct 2020 GB
2586722 Feb 2022 GB
2006246289 Sep 2006 JP
20130052059 May 2013 KR
0033244 Jun 2000 WO
20061354832 Dec 2006 WO
2007068283 Jun 2007 WO
2016032704 Mar 2016 WO
2021101722 May 2021 WO
2021101723 May 2021 WO
Non-Patent Literature Citations (29)
Entry
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/045554, dated Oct. 17, 2019.
Combined Search and Examination Report, UKIPO, Application No. GB1904250.6, dated Sep. 10, 2019.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/022518, dated May 24, 2019.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/022578, dated May 27, 2019.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/021838, dated May 27, 2019.
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2001341.3, dated Jun. 29, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/059113, dated Feb. 23, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/059101, dated Mar. 9, 2021.
First Office Action, China National Intellectual Property Administration, Application No. 201980022689.9, dated Jun. 2, 2021.
First Office Action, China National Intellectual Property Administration, Application No. 201980022693.5, dated Jul. 8, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2021/035695, dated Sep. 9, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/012721, dated Apr. 26, 2022.
Second Office Action, China National Intellectual Property Administration, Application No. 201980022693.5, dated Apr. 13, 2022.
Examination Report under Section 18(3), UKIPO, Application No. GB2015439.9, dated May 10, 2022.
Second Office Action, China National Intellectual Property Administration, Application No. 201980022689.9, dated Oct. 27, 2021.
Second Office Action, China National Intellectual Property Administration, Application No. 201980022693.5, dated Dec. 14, 2021.
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2111666.0, dated Feb. 11, 2022.
Examination Report under Section 18(3), UKIPO, Application No. GB2101804.9, dated Feb. 25, 2022.
First Office Action, China National Intellectual Property Administration, Application No. 202080080853.4, dated Feb. 22, 2023.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB2215005.6, dated Apr. 11, 2023.
Gao, Shuo, et al., Piezoelectric vs. Capactivie Based Force Sensing in Capacitive Touch Panels, IEEE Access, vol. 4, Jul. 14, 2016.
Second Office Action, China National Intellectual Property Administration, Application No. 201980054799.3, dated May 24, 2023.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/018886, dated Jun. 10, 2022.
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2201194.4, dated Jul. 1, 2022.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/018475, dated Aug. 2, 2022.
First Office Action, China National Intellectual Property Administration, Application No. 202010105829.3, dated Apr. 12, 2022, received by counsel Jul. 28, 2022.
Notice of Preliminary Rejection, Korean Intellectual Property Office, Application No. 10-2020-7029597, dated Jul. 29, 2022.
First Office Action, China Intellectual Property Administration, Application No. 202180043659.3, dated Sep. 8, 2023.
Combined Search and Examination Report, United Kingdom Intellectual Property Office, Application No. GB2313599.9, dated Oct. 9, 2023.
Related Publications (1)
Number Date Country
20230178279 A1 Jun 2023 US