Slicing apparatus

Information

  • Patent Grant
  • 6223638
  • Patent Number
    6,223,638
  • Date Filed
    Wednesday, October 13, 1999
    24 years ago
  • Date Issued
    Tuesday, May 1, 2001
    23 years ago
Abstract
A slicing method and slicing apparatus eliminate occurrence of cracking and/or chipping of a to-be-machined object without reducing the processing speed thereof. To this end, the slicing method comprising cutting the to-be-machined object W by supporting the to-be-machined object W on a table 10 and causing this table 10 to travel in an x-axis direction while allowing a slicing blade 20 to rotate at a predetermined position. A sensor 12 detects a variable load F that the to-be-machined object receives during slicing and an actuator 11 operatively responds to receipt of a detection signal of the sensor 12. The actuator 11 forces the to-be-machined object W to deform in a direction which permits reduction of the aforesaid variable load F. The actuator is provided between the sensor 12 and table 10, or alternatively between the to-be-machined object W and sensor 12.
Description




This application is based on Japanese Patent Application No. 8-311300, filed on Nov. 6, 1996, which is incorporated herein in its entirety by reference.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a slicing method and slicing apparatus adaptable for use in cutting and separating an object to be machined, such as a ceramics wafer, for example.




2. Description of the Prior Art




Conventionally, in order to obtain a great number of chips by cutting and separating a ceramics wafer, a slicing apparatus shown in

FIG. 1

has been employed. This slicing apparatus is constructed such that a wafer


2


comprising an object to be machined is bonded onto a self-adhesive sheet


1


, which sheet is held by suction force above a slicing table


3


. While causing a slicing blade


4


consisting of a rotary blade to rotate at a predetermined position, the table


3


is driven by a ball screw mechanism or the like to move in the x-axis direction, thereby cutting the wafer


2


.




In the case of employing the slicing apparatus for cutting the wafer


2


, it can happen that the actual polishing/cutting amount of wafer


2


varies due to decentering D of the slicing blade


4


and/or due to x- and y-axis directional vibrations of a principal shaft


5


which drives the slicing blade


4


. This can result in an increase in variation of the load as applied to the wafer


2


. Accordingly, the apparatus has a problem in that the wafer


2


can crack or suffer from a “chipping” phenomenon. One available approach to avoid this problem is to reduce the machining speed; however, this has the negative consequence of reducing productivity.




SUMMARY OF THE INVENTION




It is therefore an object of the present invention to provide a slicing method and slicing apparatus capable of eliminating cracking and chipping of a to-be-machined object without having to reduce the machining speed.




To attain the foregoing object, the slicing method of the instant invention comprises a slicing method for cutting an object to be machined by supporting the to-be-machined object on a table, causing this table to travel in an x-axis direction, and causing a slicing blade to rotate at a predetermined position. The method features the steps of detecting a variable load as received by the to-be-machined object during slicing, and deforming, responsive to the variable load as detected in the above step, the to-be-machined object in a direction in which this variable load decreases.




The to-be-machined object is cut into portions by holding it on the table which is driven to travel in the x-axis direction while causing the slicing blade to rotate at a predetermined position. At this time, the to-be-machined object might vary in cutting amount due to occurrence of decentering of such slicing blade and/or possible vibrations of the principal rotatory shaft, which would result in variation of a load as applied to the to-be-machined object. To avoid this, with respect to a variable load that this to-be-machined object receives, the to-be-machined object is forced to deform in a specific direction which permits reduction of the load. As a result, the cut-away speed of such to-be-machined object is rendered stable, thus stabilizing any load applied to the to-be-machined object. As a result, it becomes possible to increase the machining speed while eliminating occurrence of cracking and chipping of the to-be-machined object, which in turn enables achievement of high-speed slicing operations.




As an apparatus for practicing the above slicing method, it is desirable that a sensor for detection of a variable load received by the to-be-machined object during slicing is provided between the to-be-machined object and the table while providing an actuator, which is operatively responsive to a detection signal generated by the sensor, for deforming the to-be-machined object in the direction which reduces the variable load between the sensor and the table or alternatively between the to-be-machined object and the sensor.




As the actuator of the aforesaid slicing apparatus, a piezoelectric actuator can be used having excellent responsiveness.




In accordance with one aspect of the invention, the direction of the variable load that the to-be-machined object receives may include three directions: a y-axis direction (cut-in depth direction), z-axis direction (principal-shaft thrust direction), and x-axis direction (cutting-forward direction). In view of this, it would be desirable to employ a sensor which detects at least one of the x- and y-axis directional load components of the load components the to-be-machined object receives, because of the fact that the principal-shaft thrust load may be almost negligible.




In other embodiments, the slicing apparatus is also provided with a filter for extracting from a detection signal of the sensor only those variable components of the load applied to the to-be-machined object, and phase inversion means for phase-inverting an output of the filter and for outputting this phase inverted signal to the actuator. More specifically, since the detection signal of the sensor contains therein various kinds of signals other than the load received by the to-be-machined object, a frequency filter having a desired pass-through band is employed to exclusively extract a variable component of cut-away resistance (load) as produced by such slicing. (The term “cut-away resistance” generally refers to a resistance force applied to a cutting device when the device applies force to a material in the course of processing the material). If the resulting variable component of cut-away resistance thus extracted is directly output to the actuator, then the actuator will operate in the direction which causes the cut-away resistance to increase. Accordingly, the output of the filter is subjected to phase inversion before outputting to the actuator thereby enabling the actuator to operate in a direction which permits reduction of the cut-away resistance.




A method of reducing the variable load that the to-be-machined object receives includes the steps of attaching onto the table a sensor for detection of a y-axis directional load applied to the to-be-machined object, and providing a vertical drive actuator between the sensor and table or alternatively between the sensor and the to-be-machined object, which actuator is operatively responsive to a detection signal of the sensor for causing the to-be-machined object to deform in the y-axis direction. In this case, it becomes possible to reduce the variable load by deforming the to-be-machined object in the y-axis direction.




In accordance with a further aspect of the invention, a method is also available which includes the steps of providing an x-axis directionally deformable support base on the table, attaching to this support base a sensor which detects an x-axis directional load component, and providing a drive actuator for driving the support base in the x-axis direction between the table and the support base. In this case, it is possible to reduce the variable load by forcing the to-be-machined object to deform in the forward and backward directions.




In either case, high-precision control is attainable with an associative circuit configuration simplified because of the fact that the direction of the load received by the to-be-machined object and the actuator's deformation direction are identical to each other.




These and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view diagram showing an operation of one prior art slicing apparatus.





FIG. 2

is a side view diagram of a first exemplary embodiment of a slicing apparatus in accordance with the present invention.





FIGS. 3



a


and


3




b


are signal waveform diagrams of a case in which no deforming control is performed in the slicing apparatus of FIG.


2


.





FIGS. 4



a


and


4




b


are signal waveform diagrams of a case in which the deforming control is performed in the slicing apparatus of FIG.


2


.





FIG. 5

is a side view diagram of a second exemplary embodiment of the slicing apparatus of the invention.





FIG. 6

is a side view diagram of a third exemplary embodiment of the slicing apparatus of the invention.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 2

shows one example of a slicing apparatus in accordance with the present invention.




A table


10


is driven by a drive mechanism (not shown), such as a ball screw mechanism, at a constant rate in the horizontal direction (x-axis direction). A piezoelectric actuator


11


which is deformable in the upward and downward directions (y-axis direction), a piezoelectric power meter


12


for detection of a y-axis load component, and a support base


13


of the vacuum chuck type are sequentially stacked and fixed-on the table


10


. A self-adhesive sheet


14


is held by suction force on the support base


13


. An object to be machined W (i.e. a “to-be-machined object”), such as a ceramic wafer or the like, is held on the top surface of the adhesive sheet


14


, by the adhesion force thereof.




The piezoelectric actuator


11


is deformable in the y-axis direction upon input of an electrical signal thereto. Preferably, this actuator is highly responsive and exhibits a certain deformation amount which corresponds to the decentering amount of a slicing blade and variation amount of a principal rotary shaft, as will be described later. The power meter


12


is a known sensor which has a built-in piezoelectric body (crystal plate, by way of example) housed in a casing, which body is operatively responsive to application of a y-axis directional load. The power meter operates to generate and issue a signal (charge carriers) proportional to a y-axis directional variable load that the to-be-machined object W receives, as will be described later. The support base


13


is formed using a chosen porous material, and is connected to a vacuum suction device not shown. With such an arrangement, it is possible to stably hold by suction force the adhesive sheet


14


mounted on the top surface while at the same time enabling easy detachment of the sheet


14


by interrupting such vacuum suction force.




It should be noted that the stacking order of the actuator


11


and power meter


12


may be reversed.




While in the above explanation the sheet


14


is directly put on the support base


13


, the apparatus may alternatively be configured in a way such that in order to support the sheet


14


with an increased positioning accuracy, the sheet


14


is held on a frame-like sheet support jig, by way of example, allowing this sheet support jig to be mounted on the support base


13


.




A slicing blade


20


is rotatably attached to a rotary principal shaft


21


which extends horizontally above the to-be-machined object W. The principal shaft


21


is coupled to a drive source (not shown) such as a motor, which drives the shaft in a direction as designated by the arrow.




The power meter


12


operates to convert a cut-away resistance F into a corresponding electrical charge signal q, wherein the resistance F is a reaction force or counter-force to the polishing/cutting force due to decentering of the slicing blade


20


. The charge signal q is input to a charge amplifier


30


, which then amplifies and converts the charge q to a voltage signal V


1


. Next, this voltage signal V


1


is input to a filter


31


, which extracts therefrom only a cut-away resistance F component and generates a signal V


2


. More specifically, the filter extracts only a signal or signals within a frequency band of from approximately 100 to 4 kHz, by way of example. Next, the extracted voltage signal V


2


is amplified by an amplifier


32


to a control voltage for input to the piezoelectric actuator


11


while also phase inverting this signal to produce a signal V


3


. This phase inversion is performed to cause the piezoelectric actuator


11


to decrease in size or “shrink” in the y-axis direction when the cut-away resistance F is positive in polarity. The phase-inverted voltage signal V


3


is input to the piezoelectric actuator


11


.




With respect to a variation of the force F which acts on the to-be-machined object W during slicing operations as described above, it is possible, by deforming the to-be-machined object W in the direction which reduces (i.e. counteracts) deformation, to flatten the cut-away resistance F or suppress a peak value thereof, thus eliminating the cracking and chipping of the to-be-machined object W.




For the purpose of verifying the effects of the present invention, a cutting experiment was carried out under specific experimental criteria, which are described as follows:



















Items




Experimental Criteria













To-Be-Machined Object




Ceramic Wafer







Principal Shaft Rotation




30,000 rpm







Number







Table Speed




30 mm/sec.







Cutting Depth




0.05 mm















Part (a) of

FIG. 3

shows an output waveform V


1


of the charge amplifier


30


in a case where no deformation control is effectuated for the to-be-machined object W, whereas FIG.


3


(


b


) is an output waveform V


2


of the filter


31


.




Part (a) of

FIG. 4

demonstrates an output waveform V


1


of the charge amplifier


30


in a case where the deformation control is carried out for the to-be-machined object W, whereas FIG.


4


(


b


) is an output waveform V


2


of the filter


31


.




As apparent from the part (b) of FIG.


3


and part (b) of

FIG. 4

, a peak value ΔP of the cut-away resistance was reduced by approximately 30% from 1 N down to 0.73 N due to the effect of the deformation control. Note here that while a piezoelectric actuator which deforms by approximately 0.8 μm upon application of a voltage of 26V was employed as the actuator


11


in this experimentation, the resulting deformation was as small as about 0.3 μm at 10V due to an experimentally used limitation on amplifier output. Under an assumption that the decentering of the slicing blade


20


is approximately 2 μm, the cut-away resistance will be able to further decrease if the deformation amount of piezoelectric actuator


11


can be further increased.




Also, a slight response delay can take place during a time period spanning from inputting a control signal to the piezoelectric actuator


11


via the charge amplifier


30


, filter


31


and amplifier


32


after detection of the cut-away resistance F at the power meter


12


until the actual occurrence of deformation of the to-be-machined object W. In this case, employing a simplified analog circuit such as a differentiation circuit can help eliminate or suppress such response delay, thereby making it possible to attain control with further enhanced accuracy.




The to-be-machined object W is held above the power meter


12


with the support table


13


and adhesive sheet


14


interposed therebetween. Due to such arrangement, a concern is that the load F the to-be-machined object W receives is caused by the adhesive sheet


14


to be placed in a damping state, which might result in a decrease in sensitivity of the power meter


12


. Fortunately, such a damping of load F actually remains minimized, thereby avoiding a decrease in sensitivity, because of the fact that the support base


13


is typically high in mechanical strength or “stiffness”. Moreover, the adhesive sheet


14


is an extra-thin sheet which measures approximately 0.1 to 0.2 mm in thickness.




It should also be noted that while the deformation of the piezoelectric actuator


11


is transferred to the to-be-machined object W via the power meter


12


, support base


13


and adhesive sheet


14


, such deformation is hardly absorbed by these components since the power meter


12


and support base


13


remain high in stiffness and, at the same time, the adhesive sheet


14


is extremely thin. Accordingly, the positional variation or deformation may be passed to the to-be-machined object W at increased efficiency.





FIG. 5

shows a second exemplary embodiment of the slicing apparatus of the present invention.




This embodiment performs x-axis directional deforming control. More specifically, a mount base


41


is secured on a table


40


which is driven at a constant rate in the x-axis direction. A pair of upwardly elongated plate springs


42


are fixedly attached at the opposite side ends of the mount base


41


. A support base


43


of the vacuum chuck type is secured between the upper edge portions of the plate springs


42


. A piezoelectric power meter


44


for detection of x-axis load component is rigidly adhered to a bottom surface of the support base


43


. A piezoelectric actuator


47


for x-axis directional drive is secured by brackets


45


,


46


between the power meter


44


and the mount base


41


. Due to this structure, when driving the piezoelectric actuator


47


, the plate springs


42


bend or deflect in the forward and reverse directions enabling the support base


43


and power meter


44


to deform together with respect to the table


40


in the x-axis direction.




Numeral


48


designates a self-adhesive sheet which holds a to-be-machined object such as a ceramic wafer, and numeral


49


indicates a slicing blade.




The slicing apparatus of this embodiment also has a control circuit (not shown) which is similar to that of the slicing apparatus as depicted in FIG.


2


. More specifically, the control circuit is comprised of a charge amplifier for conversion of a detection signal of the power meter


44


to a corresponding electrical signal, a filter for extracting only a cut-away resistance component out of an output of the charge amplifier, and an amplifier for phase-inversion of the cut-away resistance component thus extracted by the filter. Those skilled in the art will recognize that additional or different processing units can be employed. The control circuit generates an output control voltage which is fed to the piezoelectric actuator


47


. Where the x-axis directional cut-away resistance F is positive, it is possible by causing the piezoelectric actuator


47


to shrink in the x-axis direction to reduce the cut-away resistance, or alternatively to reduce its peak value.





FIG. 6

shows a third exemplary embodiment of the slicing apparatus of the present invention.




Like the second embodiment, this embodiment also carries out x-axis directional deforming control, wherein like parts or components are designated by like reference numerals with a detailed explanation thereof being omitted below.




In this embodiment, the support base


43


of the vacuum chuck type is alone secured between the upper edge portions of the plate springs


42


. This embodiment further comprises an assembly comprised of the x-axis directionally detectable piezoelectric power meter


44


and x-axis directionally driving piezoelectric actuator


47


, which are closely bonded together. This assembly is rigidly adhered via brackets


45


,


46


between the support base


43


and the mount base


41


.




In this embodiment it is also possible to reduce the cut-away resistance in the x-axis direction or reduce its peak value in a way similar to that of the second embodiment.




It should be noted that the present invention should not be exclusively limited to the foregoing embodiments. As the to-be-machined object for use in the invention, wafers may be used made of different materials other than ceramics, such as silicon wafers. Further, regarding the shape of the to-be-machined objects, increased-thickness objects may also be employed other than thin wafers.




The term “cutting” as used herein encompasses a variety of different severing techniques, or can comprise simply forming grooves in the object (without cutting through the object).




Although in the second and third embodiments the support base is x-axis directionally deformably supported by use of plate springs, these springs may be replaced with either levers or arms which are capable of swinging or pivoting in the x-axis direction. In any case, insofar as intended deformation remains minute in amount, it is possible to deform the device in the x-axis direction with enhanced response while simultaneously retaining the support base in the horizontal state. Furthermore, as the support method permitting deformability of the support base, a slide rail structure may be used which enables the base to freely slide in the x-axis direction.




In the first to third embodiments stated above, only a single directional deforming control such as x-axis direction or y-axis direction has been explained. However, it is also possible to simultaneously achieve dual, x- and y-axis directional deforming control by combining the first embodiment and second embodiments or by combining the first and third embodiments.




As apparent from the foregoing description, according to the present invention, a variable load that the to-be-machined object receives is detected during slicing while forcing the to-be-machined object to deform in the direction which permits reduction of its variable load. This has the advantage of reducing the occurrence of any cracking and chipping of such to-be-machined object without reducing the machining or processing speed thereof.




While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.



Claims
  • 1. A slicing apparatus for cutting a to-be-machined object by supporting the to-be-machined object on a table, causing this table to travel in an x-axis direction which is perpendicular to a y-axis direction, and slicing said to-be-machined object, comprising:a sensor for detecting a variable load as received by the to-be-machined object during slicing and generating a detection signal in response thereto, said sensor being positioned between the to-be-machined object and the table; and an actuator responsive to said detection signal of said sensor for applying a deformable force to said to-be-machined object in a direction which reduces the variable load.
  • 2. The slicing apparatus according to claim 1, wherein said sensor detects a variable load with respect to one of said x-axis and y-axis directions, and said actuator adjusts a force applied to said to-be-machined object in one of said x-axis and y-axis directions.
  • 3. The slicing apparatus according to claim 2, wherein said sensor detects a variable load with respect to said y-axis direction, and said actuator adjusts a force applied to said to-be-machined object in said y-axis direction, and further wherein said actuator is located between the to-be-machined object and the sensor.
  • 4. The slicing apparatus according to claim 2, wherein said sensor detects a variable load with respect to said y-axis direction, and said actuator adjusts a force applied to said to-be-machined object in said y-axis direction, and further wherein said actuator is provided between the to-be-machined object and the table.
  • 5. The slicing apparatus according to claim 2, wherein said sensor detects a variable load with respect to said x-axis direction, and said actuator adjusts a force applied to said to-be-machined object in said x-axis direction, and further wherein said actuator is located between said sensor and said table.
  • 6. The slicing apparatus according to claim 5, wherein said sensor is positioned between two resilient spring members.
  • 7. The slicing apparatus according to claim 5, wherein said actuator is attached directly to said sensor at one end and to a mount base on an opposite end, said mount base being secured to said table.
  • 8. The slicing apparatus according to claim 2, wherein said sensor detects a variable load with respect to said x-axis direction, and said actuator adjusts a force applied to said to-be-machined object in said x-axis direction, and further wherein said actuator is located adjacent to said sensor.
  • 9. The slicing apparatus according to claim 8, wherein said sensor and said actuator form an assembly, and wherein said assembly is attached to a support base on one end thereof and attached to a mount base on an opposite end, said mount base being secured to said table.
  • 10. The slicing apparatus according to claim 9, wherein said support base is positioned between two resilient spring members.
  • 11. The slicing apparatus as recited in claim 1, wherein said actuator is a piezoelectric actuator.
  • 12. The slicing apparatus as recited in claim 1, further including a filter for extracting from the detection signal of said sensor variable components of a load received by the to-be-machined object, and generating a filtered output signal.
  • 13. The slicing apparatus as recited in claim 12, further including a phrase inversion circuit for receiving and inverting said filtered output signal, and for supplying said received and inverted filtered output signal to said actuator.
Priority Claims (1)
Number Date Country Kind
8-311300 Nov 1996 JP
Parent Case Info

This application is a divisional of application Ser. No. 08/941,349, filed Sep. 30, 1997 now U.S. Pat. No. 6,021,696.

US Referenced Citations (13)
Number Name Date Kind
4091698 Obear et al. May 1978
4653361 Zobeli Mar 1987
4656868 Azuma et al. Apr 1987
4942795 Linke et al. Jul 1990
4991475 Malcok et al. Feb 1991
5025593 Kawaguchi et al. Jun 1991
5030910 Junge et al. Jul 1991
5078559 Abe et al. Jan 1992
5287843 Katayama et al. Feb 1994
5348431 Kusunoki et al. Sep 1994
5456147 Stange, Jr. Oct 1995
5490015 Umeyama et al. Feb 1996
6021696 Inao Feb 2000
Foreign Referenced Citations (7)
Number Date Country
1228986 Nov 1966 DE
62-0079949 Apr 1987 JP
3-0190650 Aug 1991 JP
3-0208541 Sep 1991 JP
3-0228546 Oct 1991 JP
4-022154 Jan 1992 JP
6-0190620 Jul 1994 JP