This application relates to slicing devices, particularly including devices for slicing fruits and vegetables.
Devices for cutting apples into sections have been available for many years. In a typical device, several radial blades are supported by a central hub blade and an outer frame. As the device is pushed downward over an apple, the central hub blade cuts the core into a central cylinder while the radial blades divide the remaining apple into several wedge-shaped sections.
Unfortunately, the current devices can be difficult to use because they do not readily push all the way through an apple or other food item. The skin of an apple, for example, may provide resistance against a complete cut. This leads to users pushing against the final bit of apple with their fingers, risking a cut or injury as the fingers come into contact with the blade.
Prior art devices for use in slicing apples are also generally not suitable for slicing or cubing other fruits and vegetables. The wedge shape created by current apple slicing devices is an undesirable shape for many uses. Consequently, current devices that are useful for slicing apples cannot be used for slicing and chopping onions or other food items.
A preferred example of the invention includes a slicer and a pusher, in which the slicer has a peripheral frame and internal cutting blades. The pusher is configured to be used to push at least partially sliced food items through the gaps between cutting blades.
In a preferred version of the invention, the device is configured to cut fruits into wedges and therefore the cutting blades are arranged in a radial fashion with substantially wedge-shaped gaps between blades.
In other versions of the invention, the blades may be arranged in a grid fashion, creating square, rectangular, or other shaped openings. In either case, for the sake of simplicity, the device will often be referred to as an apple wedger.
In some examples the pusher is hingedly attached to the slicer so that it can swing away from or toward the slicer in a pivotal fashion. When pivoted toward the slicer, raised projections on the pusher are urged into the openings between blades to push through any food items remaining in those openings
Preferred and alternative examples of the present invention are described in detail below with reference to the following drawings:
A preferred version of the apple slicer and wedger, or general slicing device, is shown in the Figures as described below.
As illustrated, the wedger includes a slicer 10 and a pusher 100 pivotally secured to the slicer. The slicer includes a peripheral frame 20 that is preferably formed in a ring or circular shape. In some alternate versions, the frame may be square or have a different shape other than circular. In a preferred example, the frame is rigid and formed from plastic, stainless steel, or other materials of sufficient strength to withstand the force imparted by urging the blades through an apple.
The blade portion of the slicer includes a central ring blade 30 and several radial blades 40 spanning the distance between the ring blade and the frame. Because the ring blade is located substantially at the center of the frame, each of the radial blades is substantially identical and divides the annular space between the frame and ring blade into equal wedge-shaped sections. In a preferred version the ring blade and radial blades are formed from stainless steel and welded or otherwise permanently secured to one another.
As best seen in the top perspective view of
The frame may optionally include a pair of handles 50, 52 to aid in pushing the blades downward against an apple or other fruit. In the version as illustrated, the handles are diametrically opposite one another and oriented with distal ends that are raised above the plane of the blades and the rest of the frame, extending generally away from the sharpened edge of the blades. In other versions handles may be formed as a peripheral flange and need not be above the plane of the blades. Still further, in some versions the handle may include a soft grip which, for example, may be in the form of a resilient material over-molded onto a more rigid handle foundation.
The pusher 100 is configured for pivotal attachment to the slicer, preferably being attached at a hinge located along an edge of each of the pusher and slicer. Thus, in the preferred example the pusher and slicer each include complementary loops positioned and configured to receive a pin 70 that serves as an axis of rotation. As shown, the slicer 10 preferably includes a single loop 60 that is positioned between a pair of loops 110, 112 formed on the perimeter of the pusher. The loops are each configured with a central bore to receive the pin, thereby allowing the pusher and slicer to pivot about the pin with respect to one another. In alternate version of the invention, a variety of other configurations may be used to enable the pusher to pivot with respect to the slicer.
In the illustrated version, the hinge is formed at an upper end of the frame 20, and therefore the loops 110, 112 are positioned above the bottom of the pusher. In this configuration, the pin 70 forming the pivot axis is positioned at or above the top surface of the raised projections of the pusher. This positioning of the pivot axis allows a fuller rotation of the pusher before it contacts the food at the bottom of the slicer, thereby providing a more even force against the food rather than a force initially applied at the side adjacent the hinge.
In yet other versions, the pusher and slicer are not pivotally attached to one another, and in such versions the loops and pin are not used. The pivotal attachment is preferred, however, for ease of use and to retain the two components together for easy storage. Most preferably, each of the pusher and the slicer has a substantially circular perimeter, with the pusher and slicer being pivotally attached to one another at a location on the perimeter.
The pusher 100 is shaped with a perimeter that generally matches that of the slicer. Thus, most preferably the pusher is circular and includes an upwardly extending peripheral flange 120. In a version in which the perimeter of the blade is square or otherwise shaped, preferably the pusher has a corresponding perimeter. The frame 20 of the slicer 10 preferably is also formed with an outer sidewall that includes a complementary channel or other surface that is sized and configured to receive the flange when the pusher is pivoted to a position in which the pusher is closed snugly against the slicer. Thus, the outer perimeter of the slicer is seated just within the flange of the pusher when the two components are pivoted together.
In the version as illustrated in
The pusher further includes an interior floor portion that is generally planar, transitioning to several raised projections sized and positioned to fit in the spaces between the blades. The projections are raised in an upward direction that extends toward the slicer when the pusher is rotated into a closed position adjacent the slicer.
In the version as shown, there are eight radial blades 40 that define eight wedge-shaped spaces between the blades. Likewise, the pusher includes eight raised projections 140 that are positioned to fit between a respective one of the wedge-shaped spaces. In other versions, the device includes a greater or lesser number of blades and therefore a greater or lesser number of projections so that a projection is positioned between each pair of blades.
The projections 140 as shown in the preferred version have a height that is greatest adjacent the center of the pusher and somewhat rounded and tapered to a lower height toward the ends of the projections that are radially outward from the center. This greater height at the middle provides for a stronger pushing force at the center, where the greatest force may be required. In other versions, the height of the projections may be substantially the same across the entire top surface of the projection.
A central hub projection 130 is provided at the center of the pusher, positioned and shaped to fit within the ring blade 30. Thus, the hub projection is generally cylindrical in shape, though with slightly rounded corners to more readily fit within the ring blade and to provide for greater tolerance as the pusher rotates into contact with the slicer.
In the version as shown in
In alternate versions, a greater or lesser number of wedge-shaped projections may be used. Likewise, the slicer and pusher may be formed without a central ring blade and corresponding hub, thereby forming a slicer that does not simultaneously separate the core from the fruit. In such a version, the blades 40 are simply joined substantially at the center of the slicer to form a plurality of wedges.
In yet other versions, the slicer includes a plurality of blades arranged perpendicularly to form a grid of squares which may be used to cut a potato into French fries or other such shapes, for example as illustrated in
At a location diametrically opposite the hinge joining the pusher and slicer, the pusher includes a radial lip 150 sufficiently large to be engaged by a thumb or finger in order to separate the pusher from the slicer. The slicer and pusher may each further include a tongue and groove or other such complementary surfaces to retain the pusher against the slicer for storage (in the position as shown in
In the version as shown in
In use, the slicer is placed against an apple or other food item. In the case of an apple, the slicer is preferably positioned such that the central ring blade is coaxial with an axis extending through the core of the apple from the stem to the blossom. The slicer is pushed downward against the apple, thereby separating the apple into wedges and forming a central cylinder segment that contains the majority of the core. In this initial operation of the slicer, the pusher is pivoted away from the slicer, preferably at an obtuse angle, so that it does not interfere with the slicing action. This orientation of the pusher with respect to the slicer is shown in
As noted above, the initial slicing is performed with the pusher rotated away from the slicer. Thus, the initial slicing is done by pressing the slicer downward against a food item and toward a countertop or cutting board while the pusher is rotated away.
At the termination of the slicing action, a portion of the meat and skin of the apple may not be fully sliced. In such a case, the pusher is rotated toward a closed position, adjacent the slicer. The path of rotation is shown in
In some versions, the slicer may include a receptacle attached to the slicer and positioned to receive sliced bits as they are pushed upward and through the blades, as illustrated in
In a preferred version the invention the container 320 is transparent. Most preferably, the container also includes volumetric markings on at least one sidewall of the container to allow user to measure the volume of sliced food items retained within the container.
An exemplary version of an alternate embodiment of the invention incorporating a grid of perpendicular blades is illustrated in the perspective view of
In the version incorporating a grid of perpendicular blades, the grid 220 will include a plurality 211 of first blades (for example 212) arranged in parallel rows and a second plurality 213 of second blades (for example 214) arranged in parallel rows. As best seen in
With reference to the top view of
In some versions of the invention each of the projections formed on the pusher may be of a similar or identical size and shape. Thus, in some examples of the invention each of the projections has the same height, with the height being indicated as a distance that the projection extends above a base 219 of the pusher in the vertical direction H as shown in
Each of the projections includes an upper surface, for example surface 216 as indicated on a first projection 241. In some versions of the invention, the upper surfaces of the projections may be horizontal. By way of reference, horizontal is defined as the plane defined by the grid of blades. Thus, with reference to
In the preferred example of the invention, the height of the projections is also varied from one projection to the next. In versions of the invention in which all of the projections have the same height, it can be difficult to push the food items through the grid of blades. As illustrated in
With reference to the sectional view of
Most preferably, the variations in height of the projections are arranged in groups. Thus, for example, in one version of the invention the projections in each of the columns may have heights that are arranged as with those of the central column 240. In other versions, a relatively central projection (for example 245) may be the tallest among all of the plurality of projections with neighboring projections in both columns and rows tapering off gradually in height in every direction toward the peripheral frame.
As illustrated in the preferred example, the tallest projection is approximately twice as tall as the shortest one. This ratio may be varied in other versions of the invention, for example, including versions in which the tallest projection is three times as tall as the shortest projection and versions in which the tallest projection is one and one half times as tall as the shortest projection.
Each of the various versions of invention as illustrated is suitable for slicing. In the context of this invention, the term “slicing” should be understood to include chopping or otherwise cutting, and is not intended to convey a particular arrangement of blades.
In alternate version of the slicing device is shown in
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow.
This application is a continuation in part of U.S. application Ser. No. 13/283,887 filed Oct. 28, 2011, which claims priority to provisional application Ser. No. 61/407,761 filed Oct. 28, 2010.
Number | Name | Date | Kind |
---|---|---|---|
52740 | Onderdonk | Feb 1866 | A |
3116770 | Tanuma | Jan 1964 | A |
4095339 | Turner | Jun 1978 | A |
4852256 | Schoettler | Aug 1989 | A |
5337480 | Codikow | Aug 1994 | A |
5749145 | Baukloh | May 1998 | A |
D464851 | Dorion | Oct 2002 | S |
D535164 | St. Germain et al. | Jan 2007 | S |
D573418 | Ho | Jul 2008 | S |
D576454 | Repac | Sep 2008 | S |
D591115 | Repac | Apr 2009 | S |
8046921 | Mastroianni | Nov 2011 | B2 |
8286355 | Aby-Eva et al. | Oct 2012 | B2 |
Number | Date | Country |
---|---|---|
102007042660 | Nov 2009 | DE |
2312613 | Nov 1997 | GB |
Number | Date | Country | |
---|---|---|---|
20120131800 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61407761 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13283887 | Oct 2011 | US |
Child | 13365609 | US |