The present invention is directed to a binding mechanism, and more particularly, to a binding mechanism having support portions which are slidable or movable relative to each other.
Binding mechanisms are widely used in binders, notebooks, folders and the like to bind loose leaf papers and other components together. Three-ring binding mechanisms typically include a set of three rings which are selectively openable and closable to allow papers to be easily inserted into, and removed from, the binding mechanism. However, existing three-ring binding mechanisms may be difficult to operate, expensive to manufacture and may lack robustness. Furthermore, many existing ring binding mechanisms do not provide positive feedback regarding the open and/or closed nature of the binding mechanism. Finally, many existing ring binding mechanism are spring loaded which can be difficult to operate and can pinch a user's fingers when closed. Accordingly, there is a need for a robust binding mechanism that is easy to operate, easy to manufacture, and provides positive positional feedback.
In one embodiment, the present invention is a binding mechanism which is easy to operate and manufacture, and is relatively strong and robust, and provides positive positional feedback. In particular, in one embodiment, the invention is a binding mechanism system including a first support portion including a first ring portion located thereon and a second support portion including a second ring portion located thereon. At least one of said first and second support portions is movable relative to the other between a closed position wherein the first and second ring portions contact to form a generally closed ring, and an open position wherein the first and second ring portions are spaced apart from each other. The binding mechanism further includes an indicator that is generally visible when the ring portions are in one of the open or closed position and that is generally not visible when the ring portions are in the other one of the open or closed positions.
In another embodiment the invention is a binding mechanism including a first support portion including a plurality of first ring portions located thereon and a plurality of guide structures located thereon. The binding mechanism further includes a second support portion including plurality of second ring portions located thereon. At least one of said first and second support portions is movable relative to the other between a closed position wherein respective ones of the first and second ring portions contact to form a plurality of generally closed rings, and an open position wherein the respective first and second ring portions are spaced apart from each other. The binding mechanism further includes an actuator including a plurality of actuator structures located thereon. The actuator structures cooperate with the guide structures such that movement of the actuator causes relative movement between the first and second support portions. The guide structure and actuator structures are arranged such that at least two of the actuator structures or guide structures are located adjacent to an associated one of the ring portions when the first and second support portions are in the closed position.
In yet another embodiment, the invention is a binding mechanism including a first support portion including a first ring portion located thereon and a second support portion including a second ring portion located thereon. At least one of said first and second support portions is movable relative to the other between a closed position wherein the first and second ring portions contact to form a generally closed ring, and an open position wherein the first and second ring portions are spaced apart from each other. The binding mechanism further includes an actuator which can be manually operated to move the first and second support portions between the open and closed positions, and a locking mechanism which is operable to fixedly secure the first support portion and the actuator together when the first and second support portions are in the closed position.
Other objects and advantages of the present invention will be apparent from the following description and the accompanying drawings.
The binding mechanism of the present invention, generally designated 10, includes an upper or first generally rectangular support portion 12 and a second or lower generally rectangular support portion 14 slidably coupled to the upper support portion 12. The upper support portion 12 has a set of first ring portions or ring halves 16 located thereon, and the lower support portion 14 has a plurality of second ring portions or ring halves 18 located thereon. When the binding mechanism 10 is in its closed position (
As best shown in
In the illustrated embodiment, a slide channel 26/slide protrusion 28 is located adjacent to each of the ring portions 16, 18 to ensure proper alignment of the ring portions 16, 18 when the binding mechanism 10 is in its closed position. Slide channels 26/slide protrusions 28 may also be located between each of the ring portions 16, 18 to provide additional sliding guidance. Although the slide channels 26 and slide protrusions 28 are illustrated as being generally “T”-shaped in end view, the slide channels 26 and slide protrusions 28 may take any of a variety of shapes, preferably complementary shapes, to guide the sliding of the support portions 12, 14. Furthermore, any of a wide variety of structures may be used to slidably couple the upper 12 and lower 14 support portions.
As best shown in
When the binder mechanism 10 is fully assembled, each actuator protrusion 41 is received through one of the access slots 36 of the lower support portion 14 and slidably received in one of the angled guide slots 30 of the upper support portion 12. Each cylindrical protrusion 41 may have a generally flat top surface to guide sliding motion of the upper support portion 12 thereon, and may have curved surfaces along its base to provide for secure attachment to the actuator 40.
The actuator 40 includes a gripping portion 42 extending generally perpendicular to the main flat surface of the actuator 40. As shown in
The actuator 40 may have a width generally corresponding to the width of the upper 12 and lower 14 support portions. In particular, in one embodiment, the actuator 40 has a width of at least about 75% of the width of at least one of the upper 12 or lower 14 support portions. The relatively wide shape of the actuator 40 helps to provide stiffness and stability to the binding mechanism 40. In addition, the lower support portion 14 may include a pair of side ridges 45 defining an actuator slot 47 therebetween (see
When the binding mechanism 10 is assembled, each slide protrusion 26 is received in a slide channel 28 to slidably couple the upper 12 and lower 14 portions. Each protrusions 46 of the actuator 41 is received through an access slot 36 of the lower portion 14 and received in a guide slot 30 of the upper portion 12. As best shown in
Once the actuator 40 is fully retracted, each actuator protrusion 41 may be located in the stop position 34 of the associated guide slot 30 and the binding mechanism 10 is in its fully open position (
As can be seen in
Although the illustrated embodiment shows the actuator protrusions 41 being located on the actuator 40 and the guide slots 30 being located on the upper support portion 12, this configuration may be reversed such that the protrusions are located on the upper support portion 12 and the guide slots are located on the actuator 40. Furthermore, various other structures besides the protrusions/slots (such as cams, levers, spring-loaded components, various mechanical structures, etc.) may be utilized to cause the opening and closing of the binding mechanism 10.
The position of the actuator slots 30 and actuator protrusions 41 is selected to provide stability of the binding mechanism 10. In particular, as shown in
In particular, the protrusions 41 may be located adjacent to the associated ring portion such that the protrusions 41 are located within the distance of the thickness of a ring portion 16, 18 in the longitudinal direction. Alternately, each protrusion 41 may be located within a distance of double the thickness of a ring portion 16, 18, or triple the thickness of a ring portion 16, 18, or four times the thickness of a ring portion 16, 18, as measured in the longitudinal direction.
As shown, for example in
In particular, when the binding mechanism 10 is moved into its closed position, the locking slots 50, 52 of the upper 12 and lower 14 support portions become aligned (see
As the actuator 40 is continued to be pushed inwardly from its position shown in
When it is desired to open the binding mechanism 10, the user may grip the gripping portion 42 of the actuator 40 and pull downwardly with sufficient force to cause the locking protrusion 46 to be urged out of the aligned locking slots 50, 52. In this manner, the locking protrusion 46 and locking slots 50, 52 may together form a locking mechanism which is operable to positively lock and secure the first 12 and second 14 support portions, and the actuator 40, together when the first 12 and second 14 support portions are in the closed position. In particular, the locking protrusion 46 and locking slot 50 provides locking faces 51 which extend in a perpendicular direction to the motion of the locking protrusion 46, wherein the locking faces 51 engage each other to lock the binding mechanism 10 in place.
Various other structures, such as various interlocks, interengaging geometry, positive locking structures, over-cam features, snaps, etc. may be utilized as the locking mechanism. Furthermore, the orientation of the locking protrusion 46 and locking slots 50, 52 may be reversed such that a locking protrusion is located on one or both of the support portions 12, 14, and a locking slot is located on the actuator 40.
As shown in
Thus the travel-limiting protrusions 39 and travel-limiting slots 37 limit the opening motion of the binding mechanism 10 to thereby prevent the upper portion 12 from being forcibly separated from the lower portion 14. In addition, if the upper support portion 12 were attempted to be separated from the lower support portion 14 when the binding mechanism 10 is in its open position, for example by attempting to pivot the upper support portion 12 about its longitudinal axis, such attempted rotation would merely drive the travel-limiting protrusions 39 deeper into the travel-limiting slots 37 to provide a secure gripping force between the upper 12 and lower 14 support portion.
As discussed above, the actuator protrusions 41 help to secure the upper two rings 20, 22 when the binding mechanism 10 is in the closed position. Further, the locking mechanism helps to secure the upper 12 and lower 14 support portions together at or adjacent to the lower ring 24. Thus, the locking mechanism helps to secure the ring portions 16, 18 of the lower ring 24 together so that in the closed position all three rings 20, 22, 24 are securely held in the closed position.
As best shown in
When the binding mechanism 10 is no longer in its closed position, the actuator 40 is moved downwardly thereby retracting the indicator portion 48 within the binding mechanism 10 and hiding the indicator portion 48 from view. Various other indicators or indicator portions may be utilized. For example, rather than having an indicator which indicates when the binding mechanism 10 is in its closed position, an indicator or indicator portion may be located along the bottom edge of the actuator 46, or be otherwise mechanically actuated, to become visible when the binding mechanism 10 is in its open position. For example, an indicator portion may be located below the actuator 40 that is covered by the actuator 40 when the actuator 40 is pulled downwardly.
The indicator portion 48 may be located inside of or coupled to either of the support portions 12, 14. For example, the indicator portion may be spring biased inside of the support portions 12, 14, and may be contacted and urged outwardly to a visible location when the actuator 40 is moved to its closed position. It also may be desired to locate the indicator portion on one of the longitudinal ends of the binding mechanism 10 so that the indicator can remain visible even when papers 13 or other components are bound to the binding mechanism.
The binding mechanism 10 may also include “unlocked” indicia. For example, in the illustrated embodiment an “unlock” symbol 45 is located on the actuator 40 adjacent to the gripping portion 42. The unlock symbol 45 is located below the lower support portion 14 and is hidden therefore from view when the binding mechanism 10 is in its closed position, and is pulled out from under the lower support portion 14 and visible when the binding mechanism 10 is in its open position.
Each of the upper 12 and lower 14 support portions may include indicia, which as measuring or ruler indicia, located thereon. For example, as shown in
As shown in
The fastener slots 44 of the actuator 40 allow the actuator 40 to continue to slide while receiving the fasteners 65 therethrough. Furthermore, the fastener slots 44 of the actuator 40 may cooperate with the fasteners 65 to ensure that the actuator 40 is not longitudinally moved beyond its desired limits. The fasteners 65 also completely secure the actuator 40 and lower support 14 to the binder 60 to prevent removal therefrom by the end user.
In this manner the binding mechanism 10 provides a binding mechanism that can be easily operated, is robust, and provides a smooth opening and closing operation. In addition, the binding mechanism 10 is preferably not spring loaded, but is instead position neutral and closes or opens under the power of the operator which prevents a user's fingers from being pinched between the rings. The binding mechanism can be easily operated with a single hand and can be mounted in a variety of orientations.
Having described the invention in detail and by reference to the preferred embodiments, it will be apparent that modifications and variations thereof are possible without departing from the scope of the invention.