Slidable cover for casing access port

Information

  • Patent Grant
  • 8210804
  • Patent Number
    8,210,804
  • Date Filed
    Friday, March 20, 2009
    15 years ago
  • Date Issued
    Tuesday, July 3, 2012
    12 years ago
Abstract
A closure device for a casing having at least one access opening wherein the closure device includes a cover member movably disposed within an interior chamber of the casing so as to be slidably displaceable along or in the direction of a casing central axis between an open and a closed position, the cover member being spaced at least partially axially from the access opening in the open position so as to permit access to the interior chamber and generally extending across and substantially obstructing the at least one access opening in the closed position.
Description
BACKGROUND

The present disclosure relates to fluid machinery, and more particularly to high pressure casings for such machinery.


Fluid machinery, such as centrifugal compressors, typically include a casing for containing working components, such as one or more impellers mounted on a rotatable shaft. The casing includes one or more inlets for directing fluid inwardly toward the compressor working components and one or more outlets for directing pressurized fluid outwardly from the casing for subsequent processing or ultimate usage. Further, compressor casings often include one or more openings to provide access to maintain or repair components of the compressor, for example, shaft bearings, etc. Such access openings must be closed by a hatch or cover during normal compressor use.


Since a variety of compressors are operated at relatively high pressure, the access covers are required to resist this high pressure, and are therefore often relatively thick, require the machining of a protrusion for mounting the cover, and are typically secured by a relatively large number of fasteners or bolts. Since these compressors may operate in hostile environments such as subsea applications, the cover bolts could be subject to deterioration, which may lead to failure of the entire compressor.


SUMMARY

Embodiments of the disclosure may provide a closure device having at least one access opening. The closure device may include a cover member movably disposed within an interior chamber of the casing so as to be slidably displaceable along a central axis between an open and a closed position, the cover member being spaced at least partially axially from the access opening in the open position so as to permit access to the interior chamber and generally extending across and substantially obstructing the at least one access opening in the closed position. Further, the cover member may generally extend across and substantially obstructs the access opening in the closed position.


Embodiments of the disclosure may further provide a compressor casing assembly. The casing assembly may include a casing having a central axis, an inner surface defining an interior chamber, an opposing outer surface, and at least one access opening extending generally radially between the casing inner and outer surfaces, and a closure device including a cover member movably disposed within the interior chamber so as to be slidably displaceable generally along the central axis between an open and a closed position, the cover member being spaced at least partially axially from the access opening in the open position so as to permit access to the interior chamber and generally extends across and substantially obstructs the access opening in the closed position.


Embodiments of the disclosure may further provide a closure device for a high pressure compressor casing, the casing having a central axis, an inner surface defining an interior chamber, an opposing outer surface, and an access opening extending between the casing inner and outer surfaces. The closure device may include a retainer body disposed within the casing interior chamber generally adjacent to the access opening and having a central bore. A cover member is movably disposed within the central bore of the retainer body so as to be slidably displaceable generally along the casing central axis between an open and a closed position. The cover member is spaced at least partially axially from the access opening in the open position so as to permit access to the interior chamber and generally extends across and substantially obstructs the access opening in the closed position.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the following detailed description when read with the accompanying Figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.



FIG. 1 is a partly broken-away, perspective view of a compressor assembly having a closure device in accordance with one or more aspects of the present disclosure.



FIG. 2 is a partly broken-away, perspective view of an axial cross-section through the compressor casing and closure device, shown without internal compressor and drive components according to one or more aspects of the present disclosure.



FIG. 3 is an axial cross-sectional view of the compressor casing and closure device, showing a cover member in an open position according to one or more aspects of the present disclosure.



FIG. 4 is another axial cross-sectional view of the compressor casing and closure device, showing a cover member in a closed position according to one or more aspects of the present disclosure.



FIG. 5 is an enlarged view of a portion of the compressor assembly and cover member of FIG. 3, according to one or more aspects of the present disclosure.





DETAILED DESCRIPTION

It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the present disclosure, however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.


Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Further, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope.



FIGS. 1-5 illustrate a closure device 10 for a turbomachine casing 1. In an exemplary embodiment, the turbomachine may include a high-pressure compressor. The casing 1 may include a central axis AC, an inner surface 2 that defines an interior chamber CC, an opposing outer surface 3, and at least one access opening 4, each extending generally radially between the casing inner and outer surfaces 2, 3. The closure device 10 may include an at least partially arcuate cover member 12 movably disposed within the casing interior chamber CC so as to be slidably displaceable generally along, and in the direction of the central axis AC between open and closed positions PO and PC, respectively. The cover member 12 is spaced at least partially axially from the access opening(s) 4 in the open position PO (FIG. 4) so as to permit access to the casing interior chamber CC. Further, the cover member 12 generally extends across and substantially obstructs the one or more access openings 4 in the closed position PC.


In an exemplary embodiment, the plurality of casing access openings 4 may be spaced circumferentially about the central axis AC, and spaced in generally equal angular increments that are generally axially aligned. However, the casing openings 4 may alternatively be unevenly angularly spaced and/or axially spaced apart, or the casing 1 may include only a single opening 4. In any of these cases, the cover member 12 is configured (e.g., sized and shaped, etc.) so as to extend across and completely cover all of the plurality of access openings 4 in the closed position PC. Further, each opening 4 may be generally rectangular and have two circumferential edges 4a, 4b and axial edges 4c, 4d, one circumferential edge 4a being located proximal to a casing section inner end 5a, as discussed in further detail below.


More specifically, the cover member 12 may include an annular body extending circumferentially about the central axis AC and may have opposing axial ends 12a, 12b, a central bore 15 extending between the two ends 12a, 12b, and an outer circumferential surface 16 extending axially between the ends 12a, 12b. The central bore 15 is sized to receive compressor components, such as a section of a main compressor shaft, shaft bearings, etc. (none shown), with clearance, such that the shaft is rotatable within the body and the body is axially displaceable along the shaft. The outer surface 16 is disposeable against section 2a of the casing inner circumferential surface(s) 2 adjacent to the access openings 4, such that the outer surface 16 generally seals against such adjacent surface section 2a of the casing 1, such sealing being assisted by radially-outward expansion of the body when subjected to high operating pressures inside the casing. Thereby, the cover member 12 seals or substantially prevents fluid flow through the one or more access openings 4.


Due to the fact that the cover outer surface 16 seals radially outwardly against the casing inner surface 2, the cover member 12 is located radially or diametrically inward of the casing 1 and is thus subjected to lesser stress (e.g., hoop shear) generated by high pressure fluid in the interior chamber CC in comparison with the casing 1. Also, the cover member 12 is at least partially supported by the casing sections against which the body outer surface 16 seals. For these reasons, the cover member 12 may be formed with a lesser thickness (tM) in comparison with the casing thickness (tC), as indicated in FIG. 5.


Although the cover member 12 may include a one-piece annular body, it may alternatively be formed of a generally arcuate body (not illustrated) having at least a partially circumferential surface. In an alternative exemplary embodiment, the cover member 12 may be formed with a generally rectangular or other polygonal or complex-shaped tubular body shaped to match a corresponding shape of the casing inner surface 1.


Referring particularly to FIG. 5, the closure device 10 may further include a pair of generally annular sealing members 18 each disposed in a separate groove 20, the two grooves 20 being disposed on opposing axial sides of the one or more casing openings 4. Each sealing member 18 is configured to prevent fluid flow generally between the cover member outer surface 16 and the casing inner surface 2, thereby substantially preventing fluid from exiting the casing interior chamber CC to the atmosphere. In an exemplary embodiment, each groove 20 may extend radially inwardly from the outer surface 16, such that the sealing members 18 seal against the casing inner surface 2 and are axially movable with the cover member 12. However, the grooves 20 may alternatively extend radially outwardly from the casing inner surface 2 such that the sealing members 18 are generally immovable relative to the displaceable cover member body and seal against the cover member outer surface 16. Furthermore, each sealing member 18 may be a commercially-available elastomeric ring, such as an O-ring, but may include any other appropriate sealing device.


Referring now to FIGS. 2-5, the closure device 10 may include a generally annular retainer body or retainer 22 disposed within the casing interior chamber CC generally adjacent to the access openings 4 at a generally fixed position on the central axis AC. In an exemplary embodiment, the retainer 22 may be an integral component of a second casing section 6, thus eliminating a high pressure seal between casing 5 and casing 6.


More specifically, the retainer 22 may have opposing first and second axial ends 22a, 22b and may be located such that the first end 22a is located generally aligned with the outer circumferential edge 4a of each access opening 4. Further, the retainer 22 may be configured to retain the cover member 12 so as to limit axial movement of the member 12 between the open and closed positions PO and PC. Although not illustrated, an axial stop may be provided to limit the axial range of motion of the cover member 12. In one embodiment, the axial stop may include a radially outward projection on the cover member 12 or alternatively may include a radially inward projection on the retainer 22 or the inner surface of the casing section 5. In an exemplary embodiment, the projection could be a turned step or a radial bolt.


Specifically, the retainer 22 may have a central bore 23 configured to receive the cover member 12 such that at least a portion of the cover member 12 is or remains disposed within the central bore 23 in both the open and closed positions PO and PC, so that the cover member 12 and the retainer 22 may be always coupled together. Furthermore, the retainer 22 may also provide an internal bearing surface 24 against which the cover member outer surface 16 may slide during displacement between the open and closed positions PO, PC, as best shown in FIG. 5. In an exemplary embodiment, the bearing surface 24 may be provided on an annular shoulder 25 that extends radially-inwardly with respect to a remainder of the bore 23, but may alternatively be provided by the entire bore 23 inner surface if formed without a shoulder (not illustrated). As the compressor casing 1 may include a two-piece construction as described below, the retainer 22 may also serve as an “adapter” in the sense that the provided bearing surface 26 may be spaced radially inward as compared with the inner surface of a second casing section 6. In an exemplary embodiment, the cover member 12 may be located primarily within the casing section 6 in the open position PO, as described below.


In an exemplary embodiment of the present disclosure, the casing 1 may further have a generally radial shoulder surface 7 facing generally away from the access opening(s) 4 and the retainer body 22 may have a generally radial contact surface 26 disposed against the casing shoulder surface 7 so as to locate the coupled cover member 12 to move between the desired positions PO and PC. The shoulder surface 7 may also prevent axial displacement of the retainer 22 in a direction generally toward the access openings 4, thereby avoiding the potential for the retainer 22 from “dislodging” and displacing along, or in the direction of the axis AC to a position where the one of more access openings 4 are obstructed.


Referring again to FIGS. 1-5, the casing 1 may be constructed of two-piece construction and include first and second casing sections 5, 6 coupled at a casing interface IC and each encompassing a portion of the casing interior chamber CC. More specifically, as illustrated in FIGS. 3-5, each casing section 5, 6 may include an inner end 5a, 6a, respectively. In one embodiment, inner end 5a may be releasably coupled to opposing inner end 6a in a variety of configurations, e.g., a plurality of bolts, clamp ring segments, etc., so as to permit separation of the two casing sections 5, 6. The first casing section 5 may be particularly formed or adapted to enclose the working components of a centrifugal compressor assembly (e.g., impellers, diffuser channels, etc.) and the second casing section 6 may be designed/adapted to enclose the components of a driver (e.g., an electric motor). As such, a shaft assembly may extend through the central bores 15, 23 of both the cover member 12 and the retainer 22 and across the interface IC, with the cover member 12 being axially displaceable without interference with/by the compressor components, as discussed above.


In an exemplary embodiment, the first casing section 5 may include the one or more access openings 4 and the retainer member 22 may be disposed within the second casing section 6 generally adjacent to the casing section inner end 6a, with the cover member 12 being movable across the interface IC. That is, the cover member 12 may be disposed substantially within the second casing section 6 in the open position PO and may be at least partially disposed within the first casing section 5 in the closed position PC. Further, the casing first section 5 may include the shoulder surface 7, which may be spaced axially inwardly from the casing section first end 5a. As such, when the retainer 22 is positioned with the radial retainer contact surface 26 disposed against the casing shoulder surface 7, the retainer 22 may be partially disposed within the first casing section 5 and thus extend across the interface IC, thereby serving to increase the structural integrity of the casing 1 at the interface IC.


Referring particularly to FIG. 5, the closure device 10 may include at least one connector 30 configured to releasably retain the cover member 12 disposed in the closed position PC. The connector(s) 30 may each include a bolt 32 extending generally radially through the casing 1 and the cover member 12, a circumferential retainer ring (not illustrated) disposed adjacent to an axial end of the cover member 12, or any other appropriate device or mechanism for releasably securing the cover member 12 in the closed position PC. As the cover body 12 seals against the inner surface of the casing 2 (in some embodiments, a section of the retainer 22), the connector(s) 30 may only be required to maintain the cover member 12 in position when the compressor 1 is not in use and is not required to “resist” the relatively high operating pressures of the compressor 1, as is the case with externally-mounted access covers.


In an alternative exemplary embodiment, the cover member 12 may be manually moveable (i.e., when pressure in the chamber CC is at ambient pressure) between the open and closed positions PO, PC, such that the body 12 may be pushed or pulled by a compressor operator or maintenance person when it is desired to access the interior chamber CC through the openings 4. However, the closure device 10 may alternatively include an actuator or mechanism (not shown) configured to displace the cover member 12 between the two positions PO, PC, such as for example, a threaded rod and nut mechanism, a motor driven spindle, a hydraulic cylinder, etc.


Although the closure device 10 of the present disclosure is specifically described and depicted as being used in a high-pressure casing of a centrifugal compressor assembly, the closure device 10 may be used with any other high or low pressure casing assembly, such as for example, a low pressure centrifugal compressor, a reciprocating compressor or any other type of fluid machinery.


The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description that follows. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.

Claims
  • 1. A closure device for a casing having at least one access opening, comprising: a cover member movably disposed within an interior chamber of the casing so as to be slidably displaceable in the direction of a casing central axis between an open and a closed position, the cover member being spaced at least partially axially from the access opening in the open position so as to permit access to the interior chamber and generally extending across and substantially obstructing the at least one access opening in the closed position, wherein the cover member includes a body extending circumferentially about the casing central axis; anda retainer body disposed within the interior chamber adjacent to the access opening and forming a central bore configured to receive the cover member such that at least a portion of the cover member is disposed within the central bore in both the open and closed positions.
  • 2. The closure device as recited in claim 1, wherein the casing has a plurality of access openings spaced circumferentially about the casing central axis, the cover member being configured to extend substantially across all of the plurality of access openings in the closed position.
  • 3. The closure device as recited in claim 1, wherein: the body has opposing axial ends with an outer circumferential surface extending axially between the opposing axial ends and having at least one groove extending radially inward from the outer circumferential surface; andat least one sealing member is disposed in the at least one groove and configured to prevent fluid flow generally between the outer circumferential surface and the interior chamber of the casing.
  • 4. The closure device as recited in claim 1, wherein: the body has opposing axial ends with an outer circumferential surface extending axially between the opposing axial ends;the interior chamber of the casing has at least one groove substantially adjacent to the body and extending radially outward from body; andat least one sealing member is disposed in the at least one groove and configured to prevent fluid flow generally between the outer circumferential surface and the interior chamber of the casing.
  • 5. The closure device as recited in claim 1, wherein the casing has a shoulder surface facing generally away from the access opening and the retainer body has a contact surface disposed against the shoulder surface so as to prevent axial displacement of the retainer body in a direction generally toward the access opening.
  • 6. The closure device as recited in claim 1, further comprising at least one connector configured to releasably retain the cover member disposed in the closed position.
  • 7. The closure device as recited in claim 6, wherein the connector includes one of a bolt extending generally radially through the casing and the cover member, and a circumferential retainer ring disposed adjacent to an axial end of the cover member.
  • 8. A compressor casing assembly comprising: a casing having a central axis, an inner surface defining an interior chamber, an opposing outer surface, and at least one access opening extending generally radially between the casing inner and outer surfaces; anda closure device including a cover member movably disposed within the interior chamber so as to be slidably displaceable generally along or in the direction of the central axis between an open and a closed position, the cover member being spaced at least partially axially from the access opening in the open position so as to permit access to the interior chamber and generally extending across and substantially obstructing the access opening in the closed position, wherein the casing includes first and second casing sections, each of the first and second sections having an inner end, wherein the inner end of the first casing section is connected with the inner end of the second casing section, the first casing section including the at least one access opening and the cover member being disposed substantially within the second casing section in the open position and at least partially disposed within the first casing section in the closed position; anda retainer body at least partially disposed within the second casing section and generally adjacent to the second casing section inner end, the retainer body defining a central bore configured to receive the cover member such that at least a portion of the cover member is disposed within the central bore in both the open and closed positions.
  • 9. The casing assembly as recited in claim 8, wherein the first casing section has a shoulder surface facing generally away from the access opening and the retainer body is partially disposed within the first casing section and has a contact surface disposed against the shoulder surface of the first casing section so as to prevent axial displacement of the retainer body in a direction generally toward the access opening.
  • 10. The casing assembly as recited in claim 8, wherein the inner ends of the first and second casing sections are releasably connected so as to permit separation of the first and second casing sections.
  • 11. The casing assembly as recited in claim 8, wherein the cover member includes a generally annular body extending circumferentially about the central axis.
  • 12. The casing assembly as recited claim 11, wherein the casing has a plurality of access openings spaced circumferentially about the central axis, the cover member being configured to extend substantially across the plurality of access openings in the closed position.
  • 13. The casing assembly as recited in claim 1, wherein: the annular body has opposing axial ends and an outer circumferential surface extending axially between the opposing axial ends; andthe closure device further comprises a pair of generally annular sealing members each disposed in a separate groove either extending radially outward from the casing inner surface or radially inward from the outer circumferential surface of the annular body, wherein each sealing member is configured to prevent fluid flow generally between the outer circumferential surface and the casing inner surface.
  • 14. A closure device for a turbomachine casing having at least one access opening, comprising: a retainer body disposed within an interior chamber of the casing and generally adjacent to the at least one access opening, wherein the retainer body defines a central bore; anda cover member movably disposed within the central bore so as to be slidably displaceable along or in the direction of a casing central axis of the casing between an open and a closed position, the cover member being spaced at least partially axially from the at least one access opening in the open position so as to permit access to the interior chamber and generally extending across and substantially obstructing the at least one access opening in the closed position.
  • 15. The closure device as recited in claim 14, wherein: the cover member includes an annular body having opposing axial ends and an outer circumferential surface extending axially between the opposing axial ends; andthe closure device further comprises a pair of generally annular sealing members each disposed in a separate groove either extending radially outward from the interior chamber of the casing or radially inward from the outer circumferential surface of the annular body, wherein each sealing member is configured to prevent fluid flow generally between the outer circumferential surface and the interior chamber of the casing.
  • 16. The closure device as recited in claim 14, wherein the casing has a shoulder surface facing generally away from the at least one access opening and the retainer body has a contact surface disposed against the shoulder surface so as to prevent axial displacement of the retainer body in a direction generally toward the at least one access opening.
  • 17. The closure device as recited in claim 14, wherein the casing includes first and second casing sections, each section having an inner end connected with the inner end of the other casing section, the first casing section including the at least one access opening and the retainer body being at least partially disposed within the second casing section, wherein the cover member is disposed substantially within the second casing section in the open position and at least partially disposed within the first casing section in the closed position.
US Referenced Citations (359)
Number Name Date Kind
815812 Gow Mar 1906 A
1057613 Baldwin Apr 1913 A
1061656 Black May 1913 A
1480775 Marien Jan 1924 A
1622768 Cook et al. Mar 1927 A
1642454 Malmstrom Sep 1927 A
2006244 Kopsa Jun 1935 A
2300766 Baumann Nov 1942 A
2328031 Risley Aug 1943 A
2345437 Tinker Mar 1944 A
2602462 Barrett Jul 1952 A
2811303 Ault et al. Oct 1957 A
2836117 Lankford May 1958 A
2868565 Suderow Jan 1959 A
2897917 Hunter Aug 1959 A
2932360 Hungate Apr 1960 A
2954841 Reistle Oct 1960 A
3044657 Horton Jul 1962 A
3191364 Sylvan Jun 1965 A
3198214 Lorenz Aug 1965 A
3204696 De Priester et al. Sep 1965 A
3213794 Adams Oct 1965 A
3220245 Van Winkle Nov 1965 A
3273325 Gerhold Sep 1966 A
3352577 Medney Nov 1967 A
3395511 Akerman Aug 1968 A
3420434 Swearingen Jan 1969 A
3431747 Hasheimi et al. Mar 1969 A
3454163 Read Jul 1969 A
3487432 Jenson Dec 1969 A
3490209 Fernandes et al. Jan 1970 A
3500614 Soo Mar 1970 A
3578342 Satterthwaite et al. May 1971 A
3628812 Larraide et al. Dec 1971 A
3672733 Arsenius et al. Jun 1972 A
3814486 Schurger Jun 1974 A
3829179 Kurita et al. Aug 1974 A
3915673 Tamai et al. Oct 1975 A
3975123 Schibbye Aug 1976 A
4033647 Beavers Jul 1977 A
4059364 Anderson et al. Nov 1977 A
4078809 Garrick et al. Mar 1978 A
4087261 Hays May 1978 A
4103899 Turner Aug 1978 A
4112687 Dixon Sep 1978 A
4117359 Wehde Sep 1978 A
4135542 Chisholm Jan 1979 A
4141283 Swanson et al. Feb 1979 A
4146261 Edmaier et al. Mar 1979 A
4165622 Brown, Jr. Aug 1979 A
4174925 Pfenning et al. Nov 1979 A
4182480 Theyse et al. Jan 1980 A
4197990 Carberg et al. Apr 1980 A
4205927 Simmons Jun 1980 A
4227373 Amend et al. Oct 1980 A
4258551 Ritzi Mar 1981 A
4259045 Teruyama Mar 1981 A
4278200 Gunnewig Jul 1981 A
4298311 Ritzi Nov 1981 A
4333748 Erickson Jun 1982 A
4334592 Fair Jun 1982 A
4336693 Hays et al. Jun 1982 A
4339923 Hays et al. Jul 1982 A
4347900 Barrington Sep 1982 A
4363608 Mulders Dec 1982 A
4374583 Barrington Feb 1983 A
4375975 McNicholas Mar 1983 A
4382804 Mellor May 1983 A
4384724 Derman et al. May 1983 A
4391102 Studhalter et al. Jul 1983 A
4396361 Fraser Aug 1983 A
4432470 Sopha Feb 1984 A
4438638 Hays et al. Mar 1984 A
4441322 Ritzi Apr 1984 A
4442925 Fukushima et al. Apr 1984 A
4453893 Hutmaker Jun 1984 A
4463567 Amend et al. Aug 1984 A
4468234 McNicholas Aug 1984 A
4471795 Linhardt Sep 1984 A
4477223 Giroux Oct 1984 A
4502839 Maddox et al. Mar 1985 A
4511309 Maddox Apr 1985 A
4531888 Buchelt Jul 1985 A
4536134 Huiber Aug 1985 A
4541531 Brule Sep 1985 A
4541607 Hotger Sep 1985 A
4573527 McDonough Mar 1986 A
4574815 West et al. Mar 1986 A
4648806 Alexander Mar 1987 A
4687017 Danko et al. Aug 1987 A
4737081 Nakajima et al. Apr 1988 A
4752185 Butler et al. Jun 1988 A
4807664 Wilson et al. Feb 1989 A
4813495 Leach Mar 1989 A
4821737 Nelson Apr 1989 A
4826403 Catlow May 1989 A
4830331 Vindum May 1989 A
4832709 Nagyszalanczy May 1989 A
4904284 Hanabusa Feb 1990 A
4913619 Haentjens et al. Apr 1990 A
4984830 Saunders Jan 1991 A
5007328 Otterman Apr 1991 A
5024585 Kralovec Jun 1991 A
5043617 Rostron Aug 1991 A
5044701 Watanabe et al. Sep 1991 A
5045046 Bond Sep 1991 A
5054995 Kaseley et al. Oct 1991 A
5064452 Yano et al. Nov 1991 A
5080137 Adams Jan 1992 A
5190440 Maier et al. Mar 1993 A
5202024 Andersson et al. Apr 1993 A
5202026 Lema Apr 1993 A
5203891 Lema Apr 1993 A
5207810 Sheth May 1993 A
5211427 Washizu May 1993 A
5246346 Schiesser Sep 1993 A
5285123 Kataoka et al. Feb 1994 A
5306051 Loker et al. Apr 1994 A
5337779 Fukuhara Aug 1994 A
5378121 Hackett Jan 1995 A
5385446 Hays Jan 1995 A
5421708 Utter Jun 1995 A
5443581 Malone Aug 1995 A
5484521 Kramer Jan 1996 A
5496394 Nied Mar 1996 A
5500039 Mori et al. Mar 1996 A
5525034 Hays Jun 1996 A
5525146 Straub Jun 1996 A
5531811 Kloberdanz Jul 1996 A
5538259 Uhrner et al. Jul 1996 A
5542831 Scarfone Aug 1996 A
5575309 Connell Nov 1996 A
5585000 Sassi Dec 1996 A
5605172 Schubert et al. Feb 1997 A
5628623 Skaggs May 1997 A
5634492 Steinruck et al. Jun 1997 A
5640472 Meinzer et al. Jun 1997 A
5641280 Timuska Jun 1997 A
5653347 Larsson Aug 1997 A
5664420 Hays Sep 1997 A
5682759 Hays Nov 1997 A
5683235 Welch Nov 1997 A
5685691 Hays Nov 1997 A
5687249 Kato Nov 1997 A
5693125 Dean Dec 1997 A
5703424 Dorman Dec 1997 A
5709528 Hablanian Jan 1998 A
5713720 Barhoum Feb 1998 A
5720799 Hays Feb 1998 A
5750040 Hays May 1998 A
5775882 Kiyokawa et al. Jul 1998 A
5779619 Borgstrom et al. Jul 1998 A
5795135 Nyilas et al. Aug 1998 A
5800092 Nill et al. Sep 1998 A
5848616 Vogel et al. Dec 1998 A
5850857 Simpson Dec 1998 A
5853585 Nesseth Dec 1998 A
5863023 Evans et al. Jan 1999 A
5899435 Mitsch et al. May 1999 A
5935053 Strid Aug 1999 A
5938803 Dries Aug 1999 A
5938819 Seery Aug 1999 A
5946915 Hays Sep 1999 A
5951066 Lane et al. Sep 1999 A
5965022 Gould Oct 1999 A
5967746 Hagi et al. Oct 1999 A
5971702 Afton et al. Oct 1999 A
5971907 Johannemann et al. Oct 1999 A
5980218 Takahashi et al. Nov 1999 A
5988524 Odajima et al. Nov 1999 A
6035934 Stevenson et al. Mar 2000 A
6059539 Nyilas et al. May 2000 A
6068447 Foege May 2000 A
6090174 Douma et al. Jul 2000 A
6090299 Hays et al. Jul 2000 A
6113675 Branstetter Sep 2000 A
6122915 Hays Sep 2000 A
6123363 Burgard et al. Sep 2000 A
6145844 Waggott Nov 2000 A
6149825 Gargas Nov 2000 A
6151881 Ai et al. Nov 2000 A
6196962 Purvey et al. Mar 2001 B1
6206202 Galk et al. Mar 2001 B1
6214075 Filges et al. Apr 2001 B1
6217637 Toney et al. Apr 2001 B1
6227379 Nesseth May 2001 B1
6277278 Conrad et al. Aug 2001 B1
6312021 Thomas Nov 2001 B1
6314738 Hays Nov 2001 B1
6372006 Pregenzer et al. Apr 2002 B1
6375437 Nolan Apr 2002 B1
6383262 Marthinsen et al. May 2002 B1
6394764 Samurin May 2002 B1
6398973 Saunders et al. Jun 2002 B1
6402465 Maier Jun 2002 B1
6426010 Lecoffre et al. Jul 2002 B1
6464469 Grob et al. Oct 2002 B1
6467988 Czachor et al. Oct 2002 B1
6468426 Klass Oct 2002 B1
6485536 Masters Nov 2002 B1
6530484 Bosman Mar 2003 B1
6530979 Firey Mar 2003 B2
6531066 Saunders et al. Mar 2003 B1
6537035 Shumway Mar 2003 B2
6540917 Weinstein et al. Apr 2003 B1
6547037 Kuzdzal Apr 2003 B2
6592654 Brown Jul 2003 B2
6596046 Conrad et al. Jul 2003 B2
6599086 Soja Jul 2003 B2
6607348 Jean Aug 2003 B2
6616719 Sun et al. Sep 2003 B1
6617731 Goodnick Sep 2003 B1
6629825 Stickland et al. Oct 2003 B2
6631617 Dreiman et al. Oct 2003 B1
6658986 Pitla et al. Dec 2003 B2
6659143 Taylor et al. Dec 2003 B1
6669845 Klass Dec 2003 B2
6688802 Ross et al. Feb 2004 B2
6707200 Carroll et al. Mar 2004 B2
6718955 Knight Apr 2004 B1
6719830 Illingworth et al. Apr 2004 B2
6764284 Oehman, Jr. Jul 2004 B2
6776812 Komura et al. Aug 2004 B2
6802693 Reinfeld et al. Oct 2004 B2
6802881 Illingworth et al. Oct 2004 B2
6811713 Arnaud Nov 2004 B2
6817846 Bennitt Nov 2004 B2
6837913 Schilling et al. Jan 2005 B2
6843836 Kitchener Jan 2005 B2
6878187 Hays et al. Apr 2005 B1
6893208 Frosini et al. May 2005 B2
6907933 Choi et al. Jun 2005 B2
6979358 Ekker Dec 2005 B2
7001448 West Feb 2006 B1
7013978 Appleford et al. Mar 2006 B2
7022150 Borgstrom et al. Apr 2006 B2
7022153 McKenzie Apr 2006 B2
7025890 Moya Apr 2006 B2
7033410 Hilpert et al. Apr 2006 B2
7033411 Carlsson et al. Apr 2006 B2
7056363 Carlsson et al. Jun 2006 B2
7063465 Wilkes et al. Jun 2006 B1
7112036 Lubell et al. Sep 2006 B2
7131292 Ikegami et al. Nov 2006 B2
7144226 Pugnet et al. Dec 2006 B2
7159723 Hilpert et al. Jan 2007 B2
7160518 Chen et al. Jan 2007 B2
7169305 Gomez Jan 2007 B2
7185447 Arbeiter Mar 2007 B2
7204241 Thompson Apr 2007 B2
7241392 Maier Jul 2007 B2
7244111 Suter et al. Jul 2007 B2
7258713 Eubank et al. Aug 2007 B2
7270145 Koezler Sep 2007 B2
7288202 Maier Oct 2007 B2
7314560 Yoshida et al. Jan 2008 B2
7323023 Michele et al. Jan 2008 B2
7328749 Reitz Feb 2008 B2
7335313 Moya Feb 2008 B2
7377110 Sheridan et al. May 2008 B2
7381235 Koene et al. Jun 2008 B2
7396373 Lagerstedt et al. Jul 2008 B2
7399412 Keuschnigg Jul 2008 B2
7435290 Lane et al. Oct 2008 B2
7445653 Trautmann et al. Nov 2008 B2
7470299 Han et al. Dec 2008 B2
7473083 Oh et al. Jan 2009 B2
7479171 Cho et al. Jan 2009 B2
7494523 Oh et al. Feb 2009 B2
7501002 Han et al. Mar 2009 B2
7520210 Theodore, Jr. et al. Apr 2009 B2
7575422 Bode et al. Aug 2009 B2
7578863 Becker et al. Aug 2009 B2
7591882 Harazim Sep 2009 B2
7594941 Zheng et al. Sep 2009 B2
7594942 Polderman Sep 2009 B2
7610955 Irwin, Jr. Nov 2009 B2
7628836 Baronet et al. Dec 2009 B2
7637699 Albrecht Dec 2009 B2
7674377 Crew Mar 2010 B2
7677308 Kolle Mar 2010 B2
7708537 Bhatia et al. May 2010 B2
7708808 Heumann May 2010 B1
7744663 Wallace Jun 2010 B2
7748079 McDowell et al. Jul 2010 B2
7766989 Lane et al. Aug 2010 B2
7811344 Duke et al. Oct 2010 B1
7811347 Carlsson et al. Oct 2010 B2
7815415 Kanezawa et al. Oct 2010 B2
7824458 Borgstrom et al. Nov 2010 B2
7824459 Borgstrom et al. Nov 2010 B2
7846228 Saaski et al. Dec 2010 B1
20010007283 Singh et al. Jul 2001 A1
20020009361 Reichert et al. Jan 2002 A1
20030029318 Firey Feb 2003 A1
20030035718 Langston et al. Feb 2003 A1
20030136094 Illingworth et al. Jul 2003 A1
20040007261 Cornwell Jan 2004 A1
20040170505 Lenderink et al. Sep 2004 A1
20050173337 Costinel Aug 2005 A1
20060065609 Arthur Mar 2006 A1
20060090430 Trautman et al. May 2006 A1
20060096933 Maier May 2006 A1
20060157251 Stinessen et al. Jul 2006 A1
20060157406 Maier Jul 2006 A1
20060193728 Lindsey et al. Aug 2006 A1
20060222515 Delmotte et al. Oct 2006 A1
20060230933 Harazim Oct 2006 A1
20060239831 Garris, Jr. Oct 2006 A1
20060254659 Ballot et al. Nov 2006 A1
20060275160 Leu et al. Dec 2006 A1
20070029091 Stinessen et al. Feb 2007 A1
20070036646 Nguyen et al. Feb 2007 A1
20070051245 Yun Mar 2007 A1
20070062374 Kolle Mar 2007 A1
20070065317 Stock Mar 2007 A1
20070084340 Dou et al. Apr 2007 A1
20070140870 Fukanuma et al. Jun 2007 A1
20070151922 Mian Jul 2007 A1
20070163215 Lagerstadt Jul 2007 A1
20070172363 Laboube et al. Jul 2007 A1
20070196215 Frosini et al. Aug 2007 A1
20070227969 Dehaene et al. Oct 2007 A1
20070294986 Beetz Dec 2007 A1
20080031732 Peer et al. Feb 2008 A1
20080039732 Bowman Feb 2008 A9
20080246281 Agrawal et al. Oct 2008 A1
20080315812 Balboul Dec 2008 A1
20090013658 Borgstrom et al. Jan 2009 A1
20090015012 Metzler et al. Jan 2009 A1
20090025562 Hallgren et al. Jan 2009 A1
20090025563 Borgstrom et al. Jan 2009 A1
20090151928 Lawson Jun 2009 A1
20090159523 McCutchen Jun 2009 A1
20090169407 Yun Jul 2009 A1
20090173095 Bhatia et al. Jul 2009 A1
20090266231 Franzen et al. Oct 2009 A1
20090304496 Maier Dec 2009 A1
20090321343 Maier Dec 2009 A1
20090324391 Maier Dec 2009 A1
20100007133 Maier Jan 2010 A1
20100021292 Maier et al. Jan 2010 A1
20100038309 Maier Feb 2010 A1
20100043288 Wallace Feb 2010 A1
20100043364 Curien Feb 2010 A1
20100044966 Majot et al. Feb 2010 A1
20100072121 Maier Mar 2010 A1
20100074768 Maier Mar 2010 A1
20100083690 Sato et al. Apr 2010 A1
20100090087 Maier Apr 2010 A1
20100143172 Sato et al. Jun 2010 A1
20100163232 Kolle Jul 2010 A1
20100183438 Maier et al. Jul 2010 A1
20100239419 Maier et al. Sep 2010 A1
20100239437 Maier Sep 2010 A1
20100247299 Maier Sep 2010 A1
20100257827 Lane et al. Oct 2010 A1
20110017307 Kidd et al. Jan 2011 A1
20110061536 Maier et al. Mar 2011 A1
Foreign Referenced Citations (37)
Number Date Country
2647511 Oct 2007 CA
301285 Oct 1991 EP
1582703 Oct 2005 EP
2013479 Jan 2009 EP
7838631.5 Dec 2009 EP
2323639 Sep 1998 GB
2337561 Nov 1999 GB
54099206 Jan 1978 JP
08 068501 Mar 1996 JP
8-284961 Nov 1996 JP
2002 242699 Aug 2002 JP
2004034017 Feb 2004 JP
3711028 Oct 2005 JP
2005291202 Oct 2005 JP
2009085521 Feb 2008 KR
2008012579 Dec 2008 MX
9524563 Sep 1995 WO
0117096 Mar 2001 WO
2007043889 Apr 2007 WO
2007103248 Sep 2007 WO
2007120506 Oct 2007 WO
2008036221 Mar 2008 WO
2008039446 Mar 2008 WO
2008039491 Apr 2008 WO
2008039731 Apr 2008 WO
2008039732 Apr 2008 WO
2008039733 Apr 2008 WO
2008039734 Apr 2008 WO
2008036394 Jul 2008 WO
2009111616 Sep 2009 WO
2009158252 Dec 2009 WO
2009158253 Dec 2009 WO
2010083416 Jul 2010 WO
2010083427 Jul 2010 WO
2010107579 Sep 2010 WO
2010110992 Sep 2010 WO
2011034764 Mar 2011 WO
Related Publications (1)
Number Date Country
20100239419 A1 Sep 2010 US