The present invention relates broadly to retaining ring pliers used to remove and replace both internal and external retaining rings. Such pliers are convertible between a first position which allows the jaws to move inwardly as the handles are moved inwardly, and a second position which enables the jaws to move outwardly as the handles are moved inwardly. More, particularly, the invention relates to a slidable switching mechanism provided on the retaining ring pliers to more easily effect the transfer between the first and second positions.
Retaining rings are utilized in annular grooves on shafts and ends of shafts to retain bearings, collars and the like on the shaft. A retaining ring extends circumferentially between a pair of ends which have hubs. The hubs have apertures which receive tips of a plier tool. The force applied by the pliers either spread the hubs to expand the ring or squeezes the hubs to contract the ring. The plier tool is necessary for installing the retaining ring in and removing the retaining ring from either external or internal grooves.
Accordingly, it is sometimes desirable to squeeze the handles to effect movement of the jaws outwardly to expand the ring. It is at other times desirable to squeeze the handles to effect movement of the jaws inwardly to contract the ring. Thus, it is desirable to provide a pliers that is convertible between an external and an internal tool. U.S. Pat. Nos. 4,280,265 and 4,476,750 disclose a pair of retaining ring pliers that utilize a pair of separate co-planar jaws and a pair of separate handles that range about a common fixed pivot point and that are adapted to be changed to alternately engage one handle to one jaw and the other handle to the other jaw and vice versa to permit the changing of the tool from external to internal and vice versa. Two fulcrum or transfer pins of a latching arrangement are disposed in the jaws and are adapted to alternately engage each set of the handles to shift from a position adapted to move the jaws inwardly as the handles are moved inwardly, and to a position where the jaws are moved outwardly as the handles are moved inwardly.
The prior art retaining ring pliers in the '265 and the '750 patents require that a user have a dull pointed instrument, such as a pen, nail or screwdriver, handy to forcefully push the pins between their alternate positions. Specifically, the user would have to squeeze the handles of the pliers inwardly to align the transfer pins of the latching arrangement with the holes formed in the handles, and then use the pointed instrument to push the pins from each respective side of the pliers. Thus, each of the transfer pins disclosed in the above-noted patents has to be independently placed in the correct position using an additional tool.
A convertible retaining ring pliers that does not require another instrument or tool to convert the pliers between internal and external modes is disclosed in U.S. patent application Ser. No. 10/818,251 filed Apr. 5, 2004 by the assignee of this application. In this design, a switching mechanism is mounted to the plier's handles and pivot for providing simultaneous shifting of the transfer pins in the jaws and handles between first and second operating positions. The switching mechanism includes a first flexing spring plate disposed on an external surface of the first handle, and a second flexing spring plate disposed on an external surface of a second handle. Each of the spring plates have a pair of boss pins engageable with opposite ends of the transfer pins. Finger pressure is simultaneously applied to the ends of the spring plates while the handles are moved inwardly to simultaneously shift the transfer pins between the first and second operating positions.
Accordingly, it is desirable to provide a convertible retaining ring pliers that does not require another instrument or tool to convert the pliers from internal to external mode and vice versa. It is further desirable to provide a relatively simple switching mechanism which does not require finger pressure to be simultaneously applied to the transfer pins from each side of the pliers, while the handles are moved inwardly to align the transfer pins with the proper holes in the handles. It is preferable that the simultaneous movement of the transfer pins will make the conversion faster and more efficient than previous models with far less complexity required in the pliers structure.
It is one object of the present invention to provide a switching mechanism in a convertible retaining ring pliers for selectively and alternatively joining relative moveable external members to a common internal member in a more efficient manner.
It is also an object of the present invention to provide a switching mechanism in a retaining ring pliers to enable simultaneous shifting of the transfer pins.
It is a further object of the present invention to provide a switching mechanism in a retaining ring pliers which provides a user with an enhanced visual indication of the operating position of the pliers.
It is an additional object of the present invention to provide a switching mechanism in a retaining ring pliers where the mechanism includes at least one slidable switchplate actuated by a single finger to provide for the simultaneous shifting of the transfer pins and hold the transfer pins in their desired operating positions.
Another object of the present invention is to provide a retaining ring pliers switching mechanism which has a minimum of parts and is simple to assemble and operate.
In one aspect of the invention, a retaining ring pliers includes a pivot assembly and first and second jaws arranged for oscillation toward and away from each other about the pivot assembly. The handles have portions adjacent to the pivot assembly disposed on respective opposite sides of the jaws. A transfer pin is slidably disposed in each jaw for alternative engagement with one or the other of the handle portions. The transfer pins are disposed in transverse bores in the jaws having axes parallel to the axis of the pivot assembly. Each of the handle portions has a pair of spaced holes disposed to receive the transfer pins. The transfer pins in the first and second jaws are selectively slidably engaged in the holes of respective first and second handles to effect movement of the jaws toward each other when the handles are moved towards each other to define a first operating position. The transfer pins in the first and second jaws are selectively slidably engaged in the holes of respective second and first handles to effect movement of the jaws away from each other as the handles are moved towards each other to define a second operating position.
The pliers is improved by means of a switching mechanism mounted to the pivot assembly and in contact with external surfaces of the handle portions and the transfer pins to enable simultaneous shifting of the transfer pins in the first and second jaws and holes of the first and second handles. The switching mechanism includes a first reaction member housing assembly disposed above the external surface of one handle portion, a second reaction member housing assembly disposed on the external surface of the other handle portion and a switchplate structure rotatably mounted for side-to-side movement about the pivot assembly and slidably positioned between at least one reaction member housing assembly and at least one of the external surfaces of the handle portions. The switchplate structure is engagable with an internal portion and an external portion of the at least one reaction member housing assembly and an end of one of the transfer pins.
Each reaction member housing assembly includes a cover provided with a domed portion for retaining a reaction member having a central portion rotatably mounted about a pin. In one embodiment, each reaction member is a spring having a coiled central portion. The spring further includes a pair of oppositely extending spring arms joined to the coiled central portion. Each spring arm terminates in a curled end. Each curled end of the spring in the second reaction member housing is engaged under stress with one of the transfer pins. Each cover includes a thin plate having a central aperture receiving the pivot assembly, and a switchplate-engaging tab extending generally perpendicularly from the thin plate. Each handle is formed with a vertical channel for receiving the tab therein. One curled end of the spring in the first reaction member housing assembly is engaged with the switchplate structure, and the other curled end of the spring in the first reaction member housing assembly is engaged with a transfer pin. The switchplate structure has a first flat portion lying between the cover and the external surface of the one handle portion, and a second flat portion offset from the first flat portion and defining an actuator adapted to be engaged by a single finger when it is desired to move the switchplate structure. The switchplate structure is formed with a recess having a pair of spaced apart sidewalls, each of which is engagable with the tab on the cover when the switchplate structure is moved from side-to-side. The switchplate structure includes either one or two switchplates. In another embodiment, one reaction member is a spring and the other reaction member is a solid, nonflexible rocker.
In another aspect of the invention, a convertible retaining ring pliers includes a pivot, and first and second jaws as well as first and second handles rotatably joined about the pivot. A pair of transfer pins is slidably disposed for selective movement in the first and second jaws and the first and second handles for establishing a first operating position enabling the jaws to move inwardly as the handles move inwardly, and a second operating position allowing the jaws to move outwardly as the handles move inwardly. A switching mechanism is mounted to the handles at the pivot for providing simultaneous shifting of the transfer pins in the jaws and handles between the first and second operating positions. The switching mechanism includes a first reaction member housing assembly mounted to one end of the pivot and disposed above an external surface of the handle, a second reaction member housing assembly mounted to an opposite end of the pivot and disposed on an external surface of the second handle and a switchplate structure rotatably mounted about the pivot and slidably positioned between at least one reaction member housing assembly and one of the external surfaces of the handle portions. Each reaction member housing assembly has a cover for retaining a spring having a central coiled portion with a pair of oppositely extending spring arms, and a spring pin about which the coiled portion of the spring is rotatably disposed. In each operating position, the switchplate structure is engaged with one of the spring arms, the cover of the at least one reaction member housing assembly and an end of one of the transfer pins.
The invention further contemplates a method of converting a retaining ring pliers having a pivot, first and second jaws rotatably secured to the pivot, first and second handles rotatably joined about the pivot, and a pair of transfer pins slidably disposed for selective movement in the first and second jaws and the first and second handles between one operating position enabling the jaws to move inwardly as the handles move inwardly, and a second operating position enabling the jaws to move outwardly as the handles move inwardly. The method includes the steps of mounting a first reaction member housing assembly having a reaction member with at opposite ends to one end of the pivot such that the first reaction member housing assembly is disposed above an external surface of the first handle; mounting a second reaction member housing assembly having a second reaction member with opposite ends to an opposite end of the pivot such that the second reaction member housing assembly is disposed on an external surface of the second handle and the opposite ends of the second reaction member are engagable under stress with ends of the transfer pins; and mounting a switchplate structure for limited rotation about the pivot so that the switchplate structure slides back and forth between at least one reaction member housing assembly and one of the external surfaces of the handles and engages opposite ends of at least one reaction member. Sliding the switchplate structure back and forth into engagement with opposite ends of the at least one reaction member while the handles are squeezed with the holes in alignment will cause both reaction members to pivot and react so as to allow the transfer pins to be pushed into and out of the first and second operating positions.
Various other objects, features and advantages of the invention will be made apparent from the following description taken together with the drawings.
The drawings illustrate the best mode presently contemplated of carrying out the invention.
In the drawings:
Referring now to
As best seen in
The handles 14 and 16 may be fabricated from suitable plate material, such as steel and are engaged at the opposite ends thereof to define end plates 48, 49 which are disposed parallel to each other to partially confine the jaws 18 and 20 and to enclose other components of the pliers 10 to be described.
The handle end plates 48, 49 are provided with transverse bores 50 to pass the pivot pin 22, and internal cylindrical bearing shoulders 52 for coaction with the bearing shoulders 46 of the jaws 18, 20. Through coaction then of the pivot pin 22 and the bearing shoulders 46 and 52, both jaws 18, 20 and both handles 14, 16 are mounted for rotation about a common defined axis. These principal components are maintained in the operative position by the pivot pin 22. The heads of the handle plates 48, 49 are formed with vertical channels 53 (
To effect the convertibility of the pliers 10, means are provided for coupling each of the jaws 18, 20 alternatively to one or the other of the two handles 14, 16. In this manner, each jaw 18, 20 is operatively linked to one or the other of the handles 14, 16 for oscillation therewith about the pivot 22. To accomplish this, each jaw 18, 20 is provided at its inner end with a transverse cylindrical bore 54 (
The handle end plates 48, 49 are each provided with a pair of transverse bores 60 and 62 spaced from each other and from the pivot pin bore 50 and disposed to be axially aligned with respective bores 54 of the jaws 18, 20 in selective relative position. These handle bores 60, 62 have the same diameter as the bores 54 of the jaws 18, 20 so that when a transfer pin 56, 58 is received within a handle bore 60, 62, that handle 14, 16 is securely coupled to the respective jaw 18, 20. As best seen in
Referring now to FIGS. 2 and 5–8, the slidable switching mechanism 12 is comprised of a first or upper reaction member housing assembly 66, a second or lower reaction member housing assembly 68 and a movable switchplate 70. In the preferred embodiment, the first reaction member housing assembly 66 is disposed above handle plate 48, and the second reaction member housing assembly 68 is positioned upon handle plate 49. Switchplate 70 is interposed and movably mounted between first reaction member housing assembly 66 and handle plate 48. As seen in
Referring now to
It is important to note that the thickness of washer 116 is slightly greater than the thickness of switchplate 70 in surrounding relationship therewith. As a result of this structure, the switchplate 70 is slidably mounted for limited rotation about washer 116 between cover 72 and handle plate 48. At the same time, clamping pressure is applied to the threaded screw 24 through the inner portion of the cover 72, and washer 116 onto handle plate 48 in a manner which will hold the pliers 10 together without impeding the movement of the switchplate 70. As seen in
As will now be described through the coaction of the switching mechanism 12, the pivot assembly 22 and the transfer pins 56, 58, each jaw 18 or 20 may be selectively rigidly linked or coupled to a selected handle 14 or 16.
The described convertible retaining ring pliers 10 is adapted for two operational modes which may be referred to as “the external ring mode” and the “internal ring mode”. Referring now to
It will be appreciated that a portion of the engagement surface 114 on switchplate 70 (as set forth in the at rest position in
When it is desired to convert the pliers 10 to the internal ring mode, the pliers 10 are held at rest and the user simply uses one finger, such as a thumb, to slide the switchplate actuator 102 to the left (
Moving the switchplate 70 from right to left does not actually convert the pliers 10 from external to internal ring mode. Rather, it sets up the mechanism to make the conversion once the respective bores 54, 60 and 62 are aligned. Shifting of the switchplate 70 lifts the curled end 98 of spring arm 94 of spring 84 in the upper reaction member housing assembly 66 out of the bore 62, and releases the curled end 96 of spring arm 92 to put pressure on the transfer pin 58, but the pin 58 cannot move. As the handles 14, 16 are squeezed together (
When it is desired to convert back to the external ring mode, the user slides the switchplate actuator 102 to the right so that it covers the INT legend. Again, side wall 110 engages tab 78 of upper reaction member housing assembly 66. As the pliers 10 are gently squeezed together, a clicking again is sensed as the transfer pins 56, 58 change position. When the handles 14, 16 are released, a further clicking may be heard as the transfer pins 56, 58 finish changing position. Now with the handles 14, 16 at rest, the jaws 18, 20 will be together in the external ring mode. Squeezing the handles 14, 16 together will move the tips 40 apart. As before, the movement of switchplate 70 from left to right does not actually convert the pliers 10 from internal to external ring mode. It sets up the mechanism to make the conversion once the bores 54, 60, 62 are aligned. Shifting of the switchplate 70 lifts the curled end 96 of spring arm 92 of spring 84 in the upper reaction member housing assembly 66 out of bore 60, and releases the curled end 98 of spring arm 94 to put pressure on the transfer pin 56, but the pin 56 cannot move. As the handles 14, 16 are squeezed together (
It should now be appreciated that the switching mechanism 12 performs two functions incidental to the operation of pliers 10. One function is that the position of slidable switchplate 70 coacting with the legend provided on the external handle surface provides a visual indication of the operating mode or position of the pliers 10. Another function is the convenience of shifting the transfer pins 56, 58 to convert the pliers to an alternative operational mode. During that shifting, the transfer pins 56, 58 are readily and simultaneously moved into their desired positions without need for an additional implement or applying finger pressure directly to the transfer pins of 56, 58. Sliding the switchplate 70 back and forth into engagement with opposite ends of one spring 84 while the handles 14, 16 are squeezed, will cause both springs 84 to pivot and react so as to cause the transfer pins 56, 58 to be pushed into and out of their respective handle bores 60, 62. The springs 84 and slidable switchplate 70 also function to hold the transfer pins 56, 58 in alignment and engagement with the bores 60, 62 depending upon the desired position of the pliers 10.
While the invention has been described with reference to the preferred embodiment, those skilled in the art will appreciate that certain substitutions, alterations and omissions may be made without departing from the spirit throughout. For example the invention contemplates an alternative embodiment using two identical switching mechanisms 12 and 13 wherein two identical switchplates 70, 71 are used such as illustrated in
Number | Name | Date | Kind |
---|---|---|---|
4280265 | Murphy | Jul 1981 | A |
4476750 | Murphy | Oct 1984 | A |
6470774 | Chang | Oct 2002 | B2 |
6983677 | Engel | Jan 2006 | B1 |
Number | Date | Country | |
---|---|---|---|
20060283291 A1 | Dec 2006 | US |