Slidably movable member and method of producing same

Abstract
A slidably movable member such as an adjusting shim used in a valve operating mechanism of an internal combustion engine of an automotive vehicle. The slidably movable member is used in contact with lubricating oil and comprises a substrate. A hard carbon-based film is coated on a surface of the substrate. The hard carbon-based film has a surface section which contains at least one of nitrogen and oxygen in an amount ranging from 0.5 to 30 at % and/or hydrogen in an amount of not more than 10 at %.
Description
BACKGROUND OF THE INVENTION

This invention relates to improvements in a slidably movable member having a hard carbon-based film which is low in friction, and more particularly to the slidably movable member having the hard carbon-based film suitable to be used in a condition to be in contact with engine lubricating oil, transmission oil or the like.


Hitherto, formation of hard carbon-based films have been proposed and put into practical use. The hard carbon-based films are formed of carbon-based materials such as amorphous carbon (a-C), a hydrogen-containing amorphous carbon (a-C:H), i-carbon (i-C) and diamond like carbon (DLC). The carbon-based films are usually formed by a plasma enhanced chemical vapor deposition (CVD) process in which hydrocarbon gas is plasma-decomposed to form the carbon-based film, or by an ion beam vapor deposition process using carbon and hydrocarbon ions. The thus formed carbon-based film has a high surface hardness and a high surface smoothness, and a high wear-resistance. Additionally, the carbon-based film is low in friction coefficient owing to solid lubricating characteristics, thereby exhibiting a low friction characteristics. The carbon-based film has a friction coefficient of about 0.1 under the condition of no lubrication, whereas a normal steel having a smooth surface has a friction coefficient ranging from 0.5 to 1.0 under the condition of no lubrication.


The hard carbon-based films have been presently applied to slidably movable members or parts to be used in a condition of no lubrication, for example, cutting tools such as a blade of a drill, processing jigs for the cutting tool, metal dies for plastic working, valve cocks and capstan rollers. Additionally, machine parts (such as those of an internal combustion engine) slidably movable in lubricating oil have been increasingly required to be reduced in mechanical loss from the viewpoints of energy saving and environmental protection. Particularly, such machine parts have been required to be lowered in friction by using the above-discussed hard carbon-based film having the solid lubricating characteristics in case that they are used in a section which is in a severe frictional condition causing a high friction loss.


SUMMARY OF THE INVENTION

In this regard, in case that a slidably movable member is coated with the above-mentioned hard carbon-based film and used to be slidably moved in engine lubricating oil, transmission oil or the like, a low friction characteristics can be obtained to some extent owing to the smoothness of the hard carbon-based film. However, it has been revealed, as a problem, that the slidably movable member coated with the hard carbon-based film is generally equal in low friction characteristics to other slidably movable members coated with hard films having no solid lubricating characteristics, such as those formed by ion plating of titanium nitride (TiN) or chromium nitride (CrN). In other words, it has been revealed, as a problem, that the slidably movable member coated with the conventional carbon-based film is generally equal in low friction characteristics in lubricating oil to slidably movable members coated with the film having no solid lubricating characteristics and the generally same surface roughness, or to superfinished steel members, even though they coated with the conventional carbon-based film have the solid lubricating characteristics.


More specifically, for example, when three steel balls having a ⅜ inch diameter are pushed onto the hard carbon-based film of diamond like carbon under a load of 1 kgf in lubricating oil and slid at a relative speed of 0.03 m/sec., the hard-carbon based film of diamond like carbon exhibits a friction coefficient ranging from 0.08 to 0.12 which is the generally same as that of the ion-plated chromium nitride (CrN) film or that of a steel material having the generally same surface roughness and provided with no hard coating treatment.


In addition, slidably movable members or parts coated with molybdenum disulfide (MoS2) or polytetrafluoroethylene (PTFE) having solid lubricating characteristics have been put into practical use in order to realize a low friction characteristics having a friction coefficient μ lower than 0.07 in lubricating oil such as engine lubricating oil or transmission oil. However, in case that such conventional slidably movable members or parts are used in further severe conditions and under a high bearing pressure, they are insufficient in wear resistance so that a necessary performance of wear resistance may be achieved only at an initial period in service but cannot be maintained for a long period of time in service.


It is an object of the present invention to provide an improved slidably movable member which can effectively overcome drawbacks encountered in conventional slidably movable members which are used in contact with lubricating oil.


Another object of the present invention is to provide an improved slidably movable member which is high in wear resistance even in a condition to be in contact with lubricating oil, throughout a long period of time in service.


A further object of the present invention is to provide an improved slidably movable member whose solid lubricating characteristics is effective even in lubricating oil so as to exhibit a low friction characteristics having a friction coefficient μ of not higher than 0.07.


A first aspect of the present invention resides in a slidably movable member used in contact with lubricating oil. The slidably movable member comprises a substrate. A hard carbon-based film is coated on a surface of the substrate. The hard carbon-based film has a surface section which contains at least one of nitrogen and oxygen in an amount ranging from 0.5 to 30 at %.


A second aspect of the present invention resides in an adjusting shim used in a valve operating mechanism of an internal combustion engine. The adjusting shim comprises a substrate. A hard carbon-based film is coated on a surface of the substrate. The hard carbon-based film has a surface section which contains at least one of nitrogen and oxygen in an amount ranging from 0.5 to 30 at %.


A third aspect of the present invention resides in a slidably movable member used in contact with lubricating oil. The slidably movable member comprises a substrate. A hard carbon-based film is coated on a surface of the substrate. The hard carbon-based film having a surface section which contains hydrogen in an amount of not more than 10 at %.


A fourth aspect of the present invention resides in a slidably movable member used in contact with lubricating oil. The slidably movable member comprises a substrate. A hard carbon-based film is coated on a surface of the substrate. The hard carbon-based film having a surface section which contains at least one of nitrogen in an amount ranging from 0.5 to 30 at %, oxygen in an amount ranging from 0.5 to 30 at %, and hydrogen in an amount of not more than 10 at %.


A fifth aspect of the present invention resides in a method of producing a slidably movable member used in contact with lubricating oil. The producing method comprises (a) preparing a substrate; (b) coating a hard carbon-based film on a surface of the substrate by a chemical vapor deposition process; and (c) causing a surface section of the hard carbon-based film to contain at least one of nitrogen and oxygen in an amount ranging from 0.5 to 30 at % by one of a plasma treatment and an ion implantation process.


A sixth aspect of the present invention resides in a method of producing a slidably movable member used in contact with lubricating oil. The producing method comprises (a) preparing a substrate; and (b) coating a hard carbon-based film on a surface of the substrate by one of a carbon ion beam process, a thermal chemical vapor deposition process, an ion plating process, and a sputtering process, to cause a content of hydrogen in a surface section of the hard carbon-based film to fall within a range of not more than 10 at %.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an explanatory perspective view of an embodiment (adjusting shim) of a slidably movable member according to the present invention;



FIG. 2 is an explanatory sectional view of a plasma treatment apparatus used for accomplishing a plasma treatment on a hard carbon-based film formed on a substrate, so as to produce the slidably movable member according to the present invention;



FIG. 3 is an explanatory sectional view of a friction tester for measuring a coefficient of friction of the slidably movable member according to the present invention;



FIG. 4 is a fragmentary explanatory sectional view of an essential part of a valve operating mechanism of an internal combustion engine, in which the slidably movable member according to the present invention is used as an adjusting shim; and



FIG. 5 is a graph showing test results of measurement of a friction loss torque, obtained by using the valve operating mechanism of FIG. 4.





DETAILED DESCRIPTION OF THE INVENTION

According to the present invention, a slidably movable member used in contact with lubricating oil comprises a substrate. Additionally, a hard carbon-based film is coated on a surface of the substrate. The hard carbon-based film is a film whose main component is carbon. The hard carbon-based film has a surface section which contains at least one of nitrogen and oxygen in an amount ranging from 0.5 to 30 at % (atomic percent) and/or hydrogen in an amount of not more than 10 at %. The surface section of the hard carbon-based film includes a surface of the hard carbon-based film. More specifically, the hard carbon-based film has a thickness ranging from 1 to 10 μm, in which the thickness of the surface section is 1/10 of that of the surface section. Accordingly, at least the surface section of the hard carbon-based film contains nitrogen and/or oxygen in the above-mentioned amount. It will be understood that nitrogen and/or oxygen may be contained in the above-mentioned amount in the hard carbon-based film other than the surface section.


In the thus arranged slidingly movable member having hard carbon-based film whose surface section contains at least one of nitrogen and oxygen in an amount ranging from 0.5 to 30 at %, a large amount of polar groups are present at the surface of the hard carbon-based film, and therefore oiliness agents contained in lubricating oil are liable to be physically or chemically adsorbed at the surface of the hard carbon-based film. As a result, a low friction characteristics can be provided to the hard carbon-based film so that the hard carbon-based film exhibits a low coefficient of friction μ of not higher than 0.07. In this regard, if the content (amount) of nitrogen and/or oxygen in the surface section of the hard carbon-based film is less than 0.5 at %, there is a tendency that the above-mentioned low friction characteristics in lubricating oil cannot be realized. In contrast, if the content exceeds 30 at %, wear resistance under a high bearing pressure is insufficient. Preferably, the content of nitrogen and/or oxygen is within a range of from 4 to 20 at %, which effectively provides a low friction characteristics in lubricating oil without degrading a wear resistance and a smoothness of the hard carbon-based film. The content of nitrogen and/or oxygen is measured by a X-ray photoelectron spectra (XPS) “ESCA-5600” produced by PHI (Physical Electronics, Inc.).


The slidably movable member is produced by a method comprising (a) preparing a substrate; (b) coating a hard carbon-based film on a surface of the substrate by a chemical vapor deposition process; and (c) causing a surface section of the hard carbon-based film to contain at least one of nitrogen and oxygen in an amount ranging from 0.5 to 30 at % by one of a plasma treatment and an ion implantation process.


Under a plasma treatment, nitrogen and/or oxygen are supplied to be contained in the surface section of the hard carbon-based film. The plasma treatment is carried out by using a plasma treatment apparatus 21 as shown in FIG. 2. The plasma treatment apparatus 21 includes a vacuum vessel 22. A substrate holder 24 is disposed inside the vacuum vessel 22 and located at a lower position in order to support the substrate (coated with the hard carbon-based film) 23 constituting the slidably movable member 1. The substrate holder 24 is electrically connected to a bias power source 25. RF electrodes 26 are provided above the substrate holder 24 and electrically connected to a RF power source 27.


A plasma forming gas contained in a gas bomb 28 is supplied through a gas regulator 29 to the RF electrodes 26 each having a central opening 26a, so that plasma is formed between the electrodes 26 under RF discharge. Then, ion 32 is formed in an aperture electrode 31 so that radical ion beam 33 reaches the surface section of the hard carbon-based film formed at the surface of the substrate 23. Consequently, the plasma forming gas is contained in the surface section of the hard carbon-based film. Evacuation of the vacuum vessel 22 is accomplished in a direction indicated by an arrow A by an evacuator (not shown). Such a plasma treatment is accomplished, for example, under a condition where a RF input power is within a range of from 10 to 100 W; a flow rate of the plasma forming gas is within a range of from 5 to 50 cc/min.; and a bias voltage applied from the bias power source 25 is within a range of from −250 to +250 V.


While the plasma treatment has been discussed to cause the surface section of the hard carbon-based film to contain nitrogen and/or oxygen, it will be understood that an ion implantation may be used for the same purpose.


Otherwise, the low friction characteristics in lubricating oil can be obtained by controlling the content or concentration of hydrogen at a level of not more than 10 at % in the surface section of the hard carbon-based film. Although measurement of content of hydrogen in the surface section is difficult, the content can be readily estimated from conditions where formation of the hard carbon-based film is accomplished. Accordingly, such a low content of hydrogen can be realized by forming the hard carbon-based film of amorphous carbon by a carbon ion beam process or the like in which hydrocarbon plasma is not used at least during formation of the hard carbon-based film, or by forming the hard carbon-based film of a diamond polycrystal by a thermal chemical vapor deposition (CVD) process. Additionally, such a low content of hydrogen can be realized by forming the hard carbon-based film by an ion plating process, or by a sputtering process. With the thus formed hard carbon-based film, a large amount of polar groups are present at the surface of the hard carbon-based film, and therefore oiliness agents contained in lubricating oil are liable to be physically or chemically adsorbed at the surface of the hard carbon-based film. It will be understood that hydrogen may be contained in the above-mentioned amount in the hard carbon-based film other than the surface section.


Further, it is preferable that the hard carbon-based film has a surface roughness Ra of not higher than 0.1 μm, so that the hard carbon-based film can have a low friction characteristics and a low aggressivity against an opposite member to which the slidably movable member is contacted. The surface roughness Ra is measured according to JIS (Japanese Industrial Standard) B 0601. Additionally, it is also preferable that the hard carbon-based film has a surface hardness Hv (by Vickers hardness test according to JIS Z 2244) of not lower than 1000. It is also preferable that the hard carbon-based film has a thickness ranging from 1 to 10 μm. If the thickness is lower than 1 μm, the hard carbon-based film is insufficient in adherence strength. If the thickness exceeds 10 μm, residual stress in the hard carbon-based film is high so that the hard carbon-based film may naturally peel off. The thickness of the hard carbon-based film is microscopically measured.


The slidably movable member 1 is preferably used as an adjusting shim in the form shown in FIG. 1. The adjusting shim is, for example, mounted on a valve lifter for an engine valve (intake or exhaust valve) of an internal combustion engine of an automotive vehicle. The valve lifter forms part of a valve operating mechanism for operating the engine valve under drive of the engine. The adjusting shim is in slidable contact with a camshaft in a condition to be coated with lubricating oil. The adjusting shim functions to adjust a valve clearance of the engine valve.


EXAMPLES

The present invention will be more readily understood with reference to the following Examples in comparison with Comparative Examples; however, these Examples are intended to illustrate the invention and are not to be construed to limit the scope of the invention.


Example 1

First, a disc-shaped substrate 2 made of ceramic (silicon nitride) was prepared to have a dimension of a 30 mm diameter and a 4 mm thickness, as shown in FIG. 1. A diamond polycrystal film (synthesized in gas phase) having a thickness of 10.0 μm was deposited on an upper surface of the substrate 2 by a thermal CVD process to form a hard carbon-based film 3 as shown in FIG. 1. The surface section of the hard carbon-based film 3 was estimated to contain hydrogen in an amount less than 10 at %. Subsequently, the surface of the diamond polycrystal film or hard carbon-based film 3 was ground to be finished by a diamond wheel or abrasive grain thereby obtaining a surface roughness Ra of 0.05 μm. As a result, a slidably movable member 1 as shown in FIG. 1 was produced.


Example 2

First, a disc-shaped substrate 2 made of carburized steel (SCM415, chromium molybdenum steel, according to JIS G 4105) was prepared to have a dimension of a 30 mm diameter and a 4 mm thickness, as shown in FIG. 1. A super finishing was made on the upper surface of the substrate 2 to have a surface roughness Ra of 0.04 μm. Thereafter, a hard carbon-based film 3 was coated on the upper surface of the substrate 2 by an ion plating process using carbon ion beam, as shown in FIG. 1. The surface section of the hard carbon-based film 3 was estimated to contain hydrogen in an amount less than 10 at %. As a result, a slidably movable member 1 as shown in FIG. 1 was produced to have a surface roughness Ra of 0.09 μm without being subjected to finishing after formation of the hard carbon-based film 3.


Example 3

A slidably movable member 1 of Example 3 was produced similarly to Example 2 with the exception that lapping was made on the upper surface of the slidably movable member 1 so that the slidably movable member has a surface roughness Ra of 0.03 μm.


Example 4

First, a disc-shaped substrate 2 made of carburized steel (according to JIS SCM415) was prepared to have a dimension of a 30 mm diameter and a 4 mm thickness, as shown in FIG. 1. A super finishing was made on the upper surface of the substrate 2 to have a surface roughness Ra of 0.04 μm. Thereafter, a diamond like carbon (DLC) film or hard carbon-based film 3 was formed on the upper surface of the substrate 2 by a plasma enhanced CVD process using hydrocarbon gas. The surface section of the hard carbon-based film 3 was estimated to contain hydrogen in an amount more than 10 at %. Subsequently, the substrate 2 with the DLC film was put on the substrate holder 24 in the plasma treatment apparatus 21 and subjected to an oxygen plasma treatment to cause the surface section of the hard carbon-based film 3 to contain oxygen under the following conditions: the RF input power was 50 W; the oxygen gas flow rate was 10 cc/min.; and the bias voltage was −100 V. As a result, a slidably movable member 1 as shown in FIG. 1 was produced to have the hard carbon-based film whose the surface section had an oxygen content of about 3.5 at %.


Example 5

The slidably movable member 1 of Example 3 was put on the substrate holder 24 in the plasma treatment apparatus 21 and subjected to an oxygen plasma treatment similar to that in Example 4. The hard carbon-based film 3 was estimated to contain hydrogen in an amount less than 10 at %. As a result, a slidably movable member 1 as shown in FIG. 1 was produced to have the hard carbon-based film whose surface section had an oxygen content of about 3.5 at %.


Example 6

The slidably movable member 1 of Example 1 was put on the substrate holder 24 in the plasma treatment apparatus 21 so that the diamond polycrystal film or hard carbon-based film 3 was subjected to a nitrogen plasma treatment to cause the surface section of the hard carbon-based film 3 to contain nitrogen, under conditions similar to those in Examples 4 and 5 with the exception that the oxygen gas flow rate was replaced with a nitrogen gas flow rate. The hard carbon-based film 3 was estimated to contain hydrogen in an amount less than 10 at %. As a result, a slidably movable member 1 of Example 6 was produced to have the hard carbon-based film 3 whose surface section had a nitrogen content of about 5.7 at %, as shown in FIG. 1.


Comparative Example 1

First, a disc-shaped substrate made of carburized steel (according to JIS SCM415) was prepared to have a dimension of a 30 mm diameter and a 4 mm thickness, as shown in FIG. 1. Grinding was made on the upper surface of the substrate to have a surface roughness Ra of 0.24 μm. Thereafter, the upper surface of the substrate 2 was subjected to a manganese phosphate treatment for forming a manganese phosphate coating. As a result, a slidably movable member of Comparative Example 1 as shown in FIG. 1 was produced.


Comparative Example 2

First, a disc-shaped substrate 2 made of carburized steel (according to JIS SCM415) was prepared to have dimensions of a 30 mm diameter and a 4 mm thickness, as shown in FIG. 1. Thereafter, super finishing was made on the upper surface of the substrate 2 to have a surface roughness Ra of 0.04 μm. As a result, a slidably movable member of Comparative Example 2 like that as shown in FIG. 1 was produced.


Comparative Example 3

The slidably movable member of Comparative Example 2 was subjected to an ion plating process, in which the surface of the slidably movable member was coated with chromium nitride (CrN). As a result, a slidably movable member of Comparative Example 3 as shown in FIG. 1 was produced to have a chromium nitride film having a thickness of 2.0 μm and a surface hardness Hv of 1500.


Comparative Example 4

First, a disc-shaped substrate made of ceramic (silicon nitride) was prepared to have a dimension of a 30 mm diameter and a 4 mm thickness, as shown in FIG. 1. A diamond polycrystal film (synthesized in gas phase) having a thickness of 10.0 μm was deposited on an upper surface of the substrate by a thermal CVD process to form a hard carbon-based film like that as shown in FIG. 1. The hard carbon-based film 3 was estimated to contain hydrogen in an amount less than 10 at %. As a result, a slidably movable member of Comparative Example 4 as shown in FIG. 1 was produced to have a surface roughness Ra of 0.12 μm.


Comparative Example 5

First, a disc-shaped substrate made of carburized steel (according to JIS SCM415) was prepared to have a dimension of a 30 mm diameter and a 4 mm thickness, as shown in FIG. 1. Then, super finishing was made on the upper surface of the substrate to have a surface roughness Ra of 0.04 μm. Thereafter, a diamond like carbon (DLC) film was formed on the upper surface of the substrate by a plasma enhanced CVD process using hydrocarbon gas. The surface section of the hard carbon-based film was estimated to contain hydrogen in an amount more than 10 at %. As a result, a slidably movable member of Comparative Example 5 as shown in FIG. 1 was produced.


Comparative Example 6

First, a disc-shaped substrate made of carburized steel (according to JIS SCM415) was prepared to have a dimension of a 30 mm diameter and a 4 mm thickness, as shown in FIG. 1. Grinding was made on the upper surface of the substrate to have a surface roughness Ra of 0.20 μm. Thereafter, a hard carbon-based film was coated on the upper surface of the substrate by an ion plating process using carbon ion beam. The surface section of the hard carbon-based film was estimated to contain hydrogen in an amount less than 10 at %. As a result, a slidably movable member of Comparative Example 6 as shown in FIG. 1 was produced to have a surface roughness Ra of 0.25 μm.


Comparative Example 7

The slidably movable member of Comparative Example 6 was put on the substrate holder 24 in the plasma treatment apparatus 21 and subjected to a oxygen plasma treatment similar to that in Example 4. The surface section of the hard carbon-based film was estimated to contain hydrogen in an amount less than 10 at %. As a result, a slidably movable member of Comparative Example 7 as shown in FIG. 1 was produced to have the hard carbon-based film whose surface section had an oxygen content of about 40 at %.


The essential points of Examples and Comparative Examples are shown at the upper part of Table 1.


EXPERIMENT

In order to evaluate the performance of the slidably movable members according to the present invention, the coefficient of frictions of the slidably movable members were measured by using a pin-on-disc type friction tester 41 as shown in FIG. 3.


The friction tester 41 included a work table 43 which was rotatably supported through a rotatable shaft 42. Three steel balls 44 were fixedly supported by a ball holder 46, and located above the work table 43. Each steel ball 44 had a diameter of ⅜ inch and formed of a steel (SUJ2, high carbon chromium bearing steel, according to JIS G 4805). A slidably movable member (of Examples and Comparative Examples) was securely mounted, as a test piece, on the work table 43, so that the steel balls 44 were in slidable contact with the slidably movable member 1. The steel balls 44 were pressed onto the slidably movable member 1 at a load of 1.0 kgf by a spring 45, through a spring support 46a connected to the ball holder 46. The rotatable shaft 42 was directly connected to a motor 47 and rotated at a relative sliding speed ranging from 0.01 to 0.1 m/sec. to the steel balls 44. A load cell 48 was connected to the spring support 46a so as to measure a force due to a torque generated in accordance with a friction between the steel balls 44 and the slidably movable member 1. Additionally, an oil bath 50 was provided so that the slidably movable member 1 was able to be dipped in lubricating oil 49. The temperature of the lubricating oil 49 was controlled at about 80° C. by an oil temperature control unit (not shown). The lubricating oil was an engine lubricating oil (5W-30SG) available on the market. From the measured force due to the torque, a coefficient of friction μ was calculated as shown in Table 1. In this experiment, two kinds of friction coefficients μ were measured, in which one friction coefficient μ was measured in the lubricating oil while the other friction coefficient μ was measured without the lubricating oil (or under no lubrication) so that no lubricating oil was supplied in the oil bath 50, under the same conditions in which the load applied to the three balls 44 was 1 kgf; and the relative sliding speed was 0.25 m/sec (250 r.p.m.).


As apparent from the test result shown in Table 1, the hard carbon-base films of Examples have a solid lubricating characteristics, and therefore the slidably movable members of Examples are low in friction coefficient as compared with the slidably movable members of Comparative Example 2 having no hard film and of Comparative Examples 1 and 3 having the hard film having no solid lubricating characteristics, under the condition of no lubrication.


However, under the condition of lubrication using the lubricating oil, the slidably movable member of Comparative Example 5 having the hard film of diamond like carbon having a hydrogen content higher than 10 at % is generally equivalent in friction coefficient to the slidably movable members of Comparative Examples 1 and 2 having no hard film. The friction coefficient is higher than 0.07 and therefore low in friction lowering effect even in the slidably movable member of Comparative Example 4 having the hard film of diamond polycrystal film (or amorphous carbon film) in case that the surface roughness Ra of the slidably movable member is over 0.10 μm.


In contrast, the slidably movable members of Examples 1 to 6 have a friction coefficient of not higher than 0.07. These slidably movable members are provided with the hard films having a hydrogen content lower than 10 at % and/or a specified nitrogen or oxygen content and having a surface roughness Ra of not higher than 0.01 μm. This reveals that these slidably movable members can be effectively lowered in friction loss even in lubricating oil.


Furthermore, a friction loss torque (torque corresponding to a friction loss) was measured for a cam of a camshaft of a valve operating mechanism of an internal combustion engine in case that the slidably movable members of Example 5 and Comparative Examples 1, 2, 3 and 5 was used as an adjusting shim, by using the engine having the valve operating mechanism shown in FIG. 4.


In the valve operating mechanism shown in FIG. 4, the camshaft 52 having cams 51 was driven to rotate through a timing belt by the engine. An engine (intake or exhaust) valve 53 was slidably inserted in a valve guide 54. A valve lifter 55 was disposed at an upper end of the valve 53. A valve spring 57 was disposed between the valve lifter 55 and a cylinder head 56. The upper end section of the valve spring 57 is fixed to a stem section of the valve 53 by using a retainer 58 and a cotter 59. The valve spring 57 functioned to apply load to the valve 53 in a direction in which the valve 53 closes. The adjusting shim 60 was fitted in a depression formed at the top section of the valve lifter 55 and had such a thickness that a clearance of about 0.3 mm was formed between the cam 51 and the adjusting shim 60. Upon rotation of the camshaft 52, the cam 51 rotated and was in slidable contact with the adjusting shim 60 thereby making reciprocating movement of the valve 53.


The camshaft 52 was driven by a motor (not shown) through a torque meter (not shown) installed on an end section of the camshaft to measure a torque corresponding to a friction loss generated between the can 51 and the adjusting shim 60, under the following conditions: A rotational speed of the camshaft 52 was 3000 r.p.m. (corresponding to idling); a maximum load of the valve spring 57 was 50 kgf; an engine lubricating oil temperature was 80° C.; the cam 51 to which the adjusting shim 60 was slidably contacted had been subjected to superfinishing so as to have a surface roughness Ra of 0.05 μm. The result of measurement of the friction loss torque is shown in the form of a bar graph in FIG. 5 in which bars a, b, c, d and e respectively represent Example 5 (1.64 kg-cm), Comparative Example 1 (2.87 kg-cm), Comparative Example 2 (2.40 kg-cm), Comparative Example 3 (2.43 kg-cm) and Comparative Example 5 (2.28 kg-cm).


As apparent from FIG. 5, the slidably movable member of Example is low in friction loss torque as compared with that of Comparative Examples even in case having the same surface roughness. This reveals that the slidably movable member according to the present invention is high in friction performance.


The entire contents of Japanese Patent Application P11-102205 (filed Apr. 9, 1999) are incorporated herein by reference.


Although the invention has been described above by reference to certain embodiments of the invention, the invention is not limited to the embodiments described above. Modifications and variations of the embodiments described above will occur to those skilled in the art, in light of the above teachings. The scope of the invention is defined with reference to the following claims.

Claims
  • 1. A system comprising: a) a metal or silicon nitride substrate;b) an oiliness agent; andc) a hard carbon-based film formed on the substrate, the hard carbon-based film comprising a sufficient number of polar groups to adsorb the oiliness agent to a degree to produce a lowered coefficient of friction;wherein the hard carbon-based film has a surface roughness, Ra, of not higher than 0.1 μm.
  • 2. A system comprising: a) a metal or silicon nitride substrate;b) a hard carbon-based film formed on the substrate, the hard carbon-based film having been applied by a process that produces in a surface of the film an increased concentration of polar groups; andc) an agent which adsorbs to the surface of the hard carbon-based film as a result of the presence of the polar groups and which thereby decreases the friction coefficient of the surface wherein the hard carbon-based film has a surface roughness, Ra, of not higher than 0.1 μm.
  • 3. A method for making a system which comprises a metal or silicon nitride substrate; a hard carbon-based film formed on the substrate, the hard carbon-based film having been applied by a process that produces in a surface of the film an increased concentration of polar groups; and an agent which adsorbs to the surface of the hard carbon-based film as a result of the presence of the polar groups and which thereby decreases the friction coefficient of the surface wherein the hard carbon-based film has a surface roughness, Ra, of not higher than 0.1 μm, the method comprising: forming the hard carbon-based film on a surface of a substrate forming part of a slidable member;producing polar groups on the surface of the hard carbon-base film; andallowing the agent to adsorb to the surface of the hard carbon-based film.
  • 4. A method as claimed in claim 3, wherein the hard carbon-based film has a surface roughness, Ra, of not higher than 0.1 μm.
  • 5. A method as claimed in claim 3, wherein the hard carbon-based film has a coefficient of friction of not higher than 0.07.
  • 6. A method as claimed in claim 3, wherein the one additive is an oiliness agent.
  • 7. A method as claimed in claim 3, wherein the producing the polar groups on the surface of the hard carbon-based film is carried out by a process selected from the group consisting of a process that provides at least one of (a) introducing into the surface of the film at least one of nitrogen and oxygen in an amount ranging from 0.5 to 30 at %; and (b) lowering a content of hydrogen in the surface of the film.
  • 8. A method as claimed in claim 3, wherein the producing the polar groups on the surface of the hard carbon-based film is carried out by a process selected from the group consisting of a carbon ion beam process in which hydrogen plasma is not used at least during formation of the hard carbon-based film, a thermal chemical vapor deposition process which produces a diamond polycrystal, an ion plating process, and a sputtering process.
  • 9. A system comprising: a first surface which comprises a sliding surface comprising a diamond-like carbon film having a hydrogen content of not more than 10% and polar groups present at the surface of the film;a second surface which comprises a sliding surface; anda lubricant in contact with the sliding surfaces of the first and second substrates wherein the lubricant comprises a friction modifier.
Priority Claims (1)
Number Date Country Kind
11-102205 Apr 1999 JP national
Parent Case Info

The present application is a continuation of U.S. application Ser. No. 09/545,181, filed Apr. 7, 2000 now U.S. Pat. No. 6,844,068, the entire contents of which are incorporated herein by reference.

US Referenced Citations (369)
Number Name Date Kind
1461 Day Dec 1839 A
2716972 Farny et al. Sep 1955 A
2982733 Wright et al. May 1961 A
3211647 O'Halloran et al. Oct 1965 A
3790315 Emanuelsson et al. Feb 1974 A
3846162 Bloom Nov 1974 A
3932228 Sugiyama et al. Jan 1976 A
4367130 Lemelson Jan 1983 A
4385880 Lemelson May 1983 A
4538929 Ehrentraut et al. Sep 1985 A
4554208 MacIver et al. Nov 1985 A
4645610 Born et al. Feb 1987 A
4702808 Lemelson Oct 1987 A
4712982 Inagaki et al. Dec 1987 A
4755237 Lemelson Jul 1988 A
4755426 Kokai et al. Jul 1988 A
4783368 Yamamoto Nov 1988 A
4834400 Lebeck May 1989 A
4842755 Dunn Jun 1989 A
4859493 Lemelson Aug 1989 A
4874596 Lemelson Oct 1989 A
4919974 McCune et al. Apr 1990 A
4933058 Bache et al. Jun 1990 A
4943345 Asmussen et al. Jul 1990 A
4960643 Lemelson Oct 1990 A
4974498 Lemelson Dec 1990 A
4980021 Kitamura et al. Dec 1990 A
4980610 Varga Dec 1990 A
4981717 Thaler Jan 1991 A
4988421 Drawl et al. Jan 1991 A
4992082 Drawl et al. Feb 1991 A
5000541 DiMarcello et al. Mar 1991 A
5021628 Lemelson Jun 1991 A
5032243 Bache et al. Jul 1991 A
5036211 Scott Jul 1991 A
5040501 Lemelson Aug 1991 A
5067826 Lemelson Nov 1991 A
5077990 Plath Jan 1992 A
5078848 Anttila et al. Jan 1992 A
5087608 Chan et al. Feb 1992 A
5096352 Lemelson Mar 1992 A
5110435 Haberland May 1992 A
5112025 Nakayama et al. May 1992 A
5127314 Swain Jul 1992 A
5131941 Lemelson Jul 1992 A
5132587 Lemelson Jul 1992 A
5142785 Grewal et al. Sep 1992 A
5143634 Quinga et al. Sep 1992 A
5148780 Urano et al. Sep 1992 A
5187021 Vydra et al. Feb 1993 A
5190807 Kimock et al. Mar 1993 A
5190824 Itoh Mar 1993 A
5202156 Yamamoto et al. Apr 1993 A
5205188 Repenning et al. Apr 1993 A
5205305 Yamakita Apr 1993 A
H1210 Jansen Jul 1993 H
5232568 Parent et al. Aug 1993 A
5237967 Willermet et al. Aug 1993 A
5249554 Tamor et al. Oct 1993 A
5255783 Goodman et al. Oct 1993 A
5255929 Lemelson Oct 1993 A
5284394 Lemelson Feb 1994 A
5288556 Lemelson Feb 1994 A
5295305 Hahn et al. Mar 1994 A
5299937 Gow Apr 1994 A
5317938 de Juan, Jr. et al. Jun 1994 A
5326488 Minokami et al. Jul 1994 A
5332348 Lemelson Jul 1994 A
5334306 Dautremont-Smith et al. Aug 1994 A
5349265 Lemelson Sep 1994 A
5358402 Reed et al. Oct 1994 A
5359170 Chen et al. Oct 1994 A
5360227 Lemelson Nov 1994 A
5380196 Kelly et al. Jan 1995 A
5401543 O'Neill et al. Mar 1995 A
H1461 DiVita et al. Jul 1995 H
5432539 Anderson Jul 1995 A
5433977 Sarin et al. Jul 1995 A
H1471 Braun et al. Aug 1995 H
5443032 Vichr et al. Aug 1995 A
5447208 Lund et al. Sep 1995 A
5456406 Lemelson Oct 1995 A
5458754 Sathrum et al. Oct 1995 A
5461648 Nauflett et al. Oct 1995 A
5462772 Lemelson Oct 1995 A
5464667 Köhler et al. Nov 1995 A
5466431 Dorfman et al. Nov 1995 A
5479069 Winsor Dec 1995 A
5482602 Cooper et al. Jan 1996 A
5491028 Sarin et al. Feb 1996 A
5497550 Trotta et al. Mar 1996 A
5509841 Winsor Apr 1996 A
5516729 Dawson et al. May 1996 A
5529815 Lemelson Jun 1996 A
5531878 Vadgama et al. Jul 1996 A
5541566 Deeney Jul 1996 A
5547716 Thaler Aug 1996 A
5551959 Martin et al. Sep 1996 A
5552675 Lemelson Sep 1996 A
5568391 Mckee Oct 1996 A
5593719 Dearnaley et al. Jan 1997 A
5616372 Conley et al. Apr 1997 A
5619889 Jones et al. Apr 1997 A
5628881 Lemelson May 1997 A
5630275 Wexler May 1997 A
5630953 Klink May 1997 A
5653300 Lund et al. Aug 1997 A
5669144 Hahn et al. Sep 1997 A
5672054 Cooper et al. Sep 1997 A
5688557 Lemelson et al. Nov 1997 A
5707409 Martin et al. Jan 1998 A
5714202 Lemelson et al. Feb 1998 A
5719109 Tokashiki et al. Feb 1998 A
5723207 Lettington et al. Mar 1998 A
5731046 Mistry et al. Mar 1998 A
5735769 Takemura et al. Apr 1998 A
5740941 Lemelson Apr 1998 A
5775817 Gottemoller et al. Jul 1998 A
5786038 Conley et al. Jul 1998 A
5790146 Anderson Aug 1998 A
5793390 Claflin et al. Aug 1998 A
5794801 Lemelson Aug 1998 A
5799549 Decker et al. Sep 1998 A
5806557 Helge Sep 1998 A
5824387 Boutaghou et al. Oct 1998 A
5834708 Svetal et al. Nov 1998 A
5840662 Nibert et al. Nov 1998 A
5843571 Sho Dec 1998 A
5851962 Kaga Dec 1998 A
5866195 Lemelson Feb 1999 A
5871805 Lemelson Feb 1999 A
5881444 Schaefer et al. Mar 1999 A
5901021 Hirano et al. May 1999 A
5910940 Guerra Jun 1999 A
5927897 Attar Jul 1999 A
5937812 Reedy et al. Aug 1999 A
5940975 Decker et al. Aug 1999 A
5945214 Ma et al. Aug 1999 A
5947710 Cooper et al. Sep 1999 A
5952102 Cutler Sep 1999 A
5958261 Offer et al. Sep 1999 A
5960762 Imai Oct 1999 A
5967250 Lund et al. Oct 1999 A
5968596 Ma et al. Oct 1999 A
5975686 Hauck et al. Nov 1999 A
5976707 Grab Nov 1999 A
5992268 Decker et al. Nov 1999 A
5993938 Tsukuda et al. Nov 1999 A
6006415 Schaefer et al. Dec 1999 A
6015597 David Jan 2000 A
6016000 Moslehi Jan 2000 A
6023979 Bills et al. Feb 2000 A
6028393 Izu et al. Feb 2000 A
6051298 Ko et al. Apr 2000 A
6056443 Koike et al. May 2000 A
6059460 Ono et al. May 2000 A
6059830 Lippincott, III et al. May 2000 A
6071597 Yang et al. Jun 2000 A
6083313 Venkatraman et al. Jul 2000 A
6083570 Lemelson et al. Jul 2000 A
6095690 Niegel et al. Aug 2000 A
6099541 Klopotek Aug 2000 A
6099976 Lemelson et al. Aug 2000 A
6106919 Lee et al. Aug 2000 A
6124198 Moslehi Sep 2000 A
6139964 Sathrum et al. Oct 2000 A
6142481 Iwashita et al. Nov 2000 A
6145608 Lund et al. Nov 2000 A
6156439 Coffinberry Dec 2000 A
6159558 Wolfe et al. Dec 2000 A
6160683 Boutaghou Dec 2000 A
6165616 Lemelson et al. Dec 2000 A
6170156 Lev et al. Jan 2001 B1
6171343 Dearnaley et al. Jan 2001 B1
6173913 Shafer et al. Jan 2001 B1
6190514 Ma et al. Feb 2001 B1
6193906 Kaneko et al. Feb 2001 B1
6197120 David Mar 2001 B1
6197428 Rogers Mar 2001 B1
6203651 Järvenkylä et al. Mar 2001 B1
6205291 Hughes et al. Mar 2001 B1
6207625 Ogano et al. Mar 2001 B1
6227056 Bills et al. May 2001 B1
6237441 Nishioka et al. May 2001 B1
6237852 Svetal et al. May 2001 B1
6238839 Tomita et al. May 2001 B1
6255262 Keenan et al. Jul 2001 B1
6261424 Goncharenko et al. Jul 2001 B1
6273793 Liners et al. Aug 2001 B1
6274220 Tsukuda et al. Aug 2001 B1
6289593 Decker et al. Sep 2001 B1
6293648 Anderson Sep 2001 B1
6296552 Boutaghou et al. Oct 2001 B1
6299425 Hirano et al. Oct 2001 B1
6305416 Snel et al. Oct 2001 B1
6309283 Liners et al. Oct 2001 B1
6311524 Brennan, III et al. Nov 2001 B1
6316734 Yang Nov 2001 B1
6322431 Schaenzer et al. Nov 2001 B1
6322719 Kaneko et al. Nov 2001 B2
6324060 Hsu Nov 2001 B1
6325385 Iwashita et al. Dec 2001 B1
6329328 Koganei et al. Dec 2001 B1
6333298 Waddoups et al. Dec 2001 B1
6338881 Sellschopp et al. Jan 2002 B1
6340245 Horton et al. Jan 2002 B1
6358123 Liners et al. Mar 2002 B1
6367705 Lee et al. Apr 2002 B1
6368676 Gaudreau et al. Apr 2002 B1
6377422 Boutaghou et al. Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6385987 Schlom et al. May 2002 B2
6386468 Neuberger et al. May 2002 B1
6399215 Zhu et al. Jun 2002 B1
6401058 Akalin et al. Jun 2002 B1
6439845 Veres Aug 2002 B1
6439986 Myoung et al. Aug 2002 B1
6452752 Boutaghou Sep 2002 B1
6468642 Bray et al. Oct 2002 B1
6471979 New et al. Oct 2002 B2
6494881 Bales et al. Dec 2002 B1
6523456 Kobayashi et al. Feb 2003 B1
6524212 Ushijima et al. Feb 2003 B2
6534141 Hull, Jr. et al. Mar 2003 B1
6537310 Palmaz et al. Mar 2003 B1
6537429 O'Donnell et al. Mar 2003 B2
6543394 Tinney Apr 2003 B2
6544308 Griffin et al. Apr 2003 B2
6553957 Ishikawa et al. Apr 2003 B1
6557968 Lee et al. May 2003 B2
6562445 Iwamura May 2003 B2
6562462 Griffin et al. May 2003 B2
6570172 Kim et al. May 2003 B2
6572651 DeScheerder et al. Jun 2003 B1
6572935 He et al. Jun 2003 B1
6572937 Hakovirta et al. Jun 2003 B2
6585064 Griffin et al. Jul 2003 B2
6586069 Dykes et al. Jul 2003 B2
6589640 Griffin et al. Jul 2003 B2
6592519 Martinez Jul 2003 B1
6592985 Griffin et al. Jul 2003 B2
6601662 Matthias et al. Aug 2003 B2
6626949 Townley Sep 2003 B1
6629906 Chiba et al. Oct 2003 B1
6637528 Nishiyama et al. Oct 2003 B2
6638569 McLaughlin et al. Oct 2003 B2
6645354 Gorokhovsky Nov 2003 B1
6656329 Ma et al. Dec 2003 B1
6658941 Bills et al. Dec 2003 B1
6666328 Sykora Dec 2003 B2
6666671 Olver et al. Dec 2003 B1
6684513 Clipstone et al. Feb 2004 B1
6684759 Gorokhovsky Feb 2004 B1
6695865 Boyle et al. Feb 2004 B2
6699106 Myoung et al. Mar 2004 B2
6701627 Korb et al. Mar 2004 B2
6715693 Dam et al. Apr 2004 B1
6726993 Teer et al. Apr 2004 B2
6729350 Schick May 2004 B2
6729527 Sonnenreich et al. May 2004 B2
6733513 Boyle et al. May 2004 B2
6739214 Griffin et al. May 2004 B2
6739238 Ushijima et al. May 2004 B2
6740393 Massler et al. May 2004 B1
6745742 Meyer Jun 2004 B2
6749033 Griffin et al. Jun 2004 B2
6753042 Plotnikov et al. Jun 2004 B1
6753635 Kuhlmann-Wilsdorf Jun 2004 B2
6761532 Capone et al. Jul 2004 B2
6761736 Woo et al. Jul 2004 B1
6780177 Shafirstein et al. Aug 2004 B2
6797326 Griffin et al. Sep 2004 B2
6799468 Borenstein Oct 2004 B2
6806242 Shirahama et al. Oct 2004 B2
6818029 Myoung et al. Nov 2004 B2
6820676 Palmaz et al. Nov 2004 B2
6821189 Coad et al. Nov 2004 B1
6821624 Utsumi et al. Nov 2004 B2
6822788 Blitstein Nov 2004 B2
6849085 Marton Feb 2005 B2
6855237 Kolpakov et al. Feb 2005 B2
6855791 Van Doren et al. Feb 2005 B2
6861098 Griffin et al. Mar 2005 B2
6861137 Griffin et al. Mar 2005 B2
6865952 Bills et al. Mar 2005 B2
6866894 Trankiem et al. Mar 2005 B2
6871700 Gorokhovsky Mar 2005 B2
6872203 Shafirstein et al. Mar 2005 B2
6878447 Griffin et al. Apr 2005 B2
6880469 Frost Apr 2005 B2
6882094 Dimitrijevic et al. Apr 2005 B2
6883476 Nohara et al. Apr 2005 B1
6885521 Kikuchi Apr 2005 B2
6886521 Hamada et al. May 2005 B2
6887585 Herbst-Dederichs May 2005 B2
6890700 Tomita et al. May 2005 B2
6893720 Nakahigashi et al. May 2005 B1
6969198 Konishi et al. Nov 2005 B2
20010036800 Liners et al. Nov 2001 A1
20020026899 McLaughlin et al. Mar 2002 A1
20020031987 Liners et al. Mar 2002 A1
20020034631 Griffin et al. Mar 2002 A1
20020034632 Griffin et al. Mar 2002 A1
20020051286 Blitstein May 2002 A1
20020070357 Kim et al. Jun 2002 A1
20020074168 Matthias et al. Jun 2002 A1
20020089571 Lee et al. Jul 2002 A1
20020090155 Ushijima et al. Jul 2002 A1
20020090578 Schaefera et al. Jul 2002 A1
20020130219 Parseghian et al. Sep 2002 A1
20020148430 Kano et al. Oct 2002 A1
20020155015 Esumi et al. Oct 2002 A1
20020175476 Chinou et al. Nov 2002 A1
20030012234 Watson et al. Jan 2003 A1
20030019111 Korb et al. Jan 2003 A1
20030019332 Korb et al. Jan 2003 A1
20030021995 Griffin et al. Jan 2003 A1
20030034182 Griffin et al. Feb 2003 A1
20030035957 Griffin et al. Feb 2003 A1
20030035958 Griffin et al. Feb 2003 A1
20030036341 Myoung et al. Feb 2003 A1
20030037640 Griffin et al. Feb 2003 A1
20030069632 De Scheerder et al. Apr 2003 A1
20030108777 Gunsel et al. Jun 2003 A1
20030114094 Myoung et al. Jun 2003 A1
20030128903 Yasuda et al. Jul 2003 A1
20030159919 Fairbairn et al. Aug 2003 A1
20030162672 Shirahama et al. Aug 2003 A1
20030168323 Frost Sep 2003 A1
20030180565 Herbst-Dederichs Sep 2003 A1
20030199741 Martinez Oct 2003 A1
20030234371 Ziegler Dec 2003 A1
20030235691 Griffin et al. Dec 2003 A1
20040003638 Schaefer et al. Jan 2004 A1
20040008406 Blitstein Jan 2004 A1
20040010068 Doren et al. Jan 2004 A1
20040011900 Gebhardt et al. Jan 2004 A1
20040027018 LeBlanc et al. Feb 2004 A1
20040035375 Gibisch et al. Feb 2004 A1
20040074467 Hamada et al. Apr 2004 A1
20040092405 Konishi et al. May 2004 A1
20040105806 Griffin et al. Jun 2004 A1
20040109621 Frost Jun 2004 A1
20040115435 Griffin et al. Jun 2004 A1
20040133301 Van Doren et al. Jul 2004 A1
20040154570 Mabuchi et al. Aug 2004 A1
20040168326 Korb et al. Sep 2004 A1
20040184687 Morales et al. Sep 2004 A1
20040223256 Feng et al. Nov 2004 A1
20040241448 Kano et al. Dec 2004 A1
20040242435 Nishimura et al. Dec 2004 A1
20040244539 Korb et al. Dec 2004 A1
20040261614 Hamada et al. Dec 2004 A1
20050001201 Bocko et al. Jan 2005 A1
20050005892 Nishimura et al. Jan 2005 A1
20050025975 Okamoto et al. Feb 2005 A1
20050035222 Hamada et al. Feb 2005 A1
20050037879 Murata et al. Feb 2005 A1
20050056241 Nomura et al. Mar 2005 A1
20050061291 Nishimura et al. Mar 2005 A1
20050061636 Frost et al. Mar 2005 A1
20050064196 Martin et al. Mar 2005 A1
20050082139 Ishikawa et al. Apr 2005 A1
20050084390 Ueno et al. Apr 2005 A1
20050089685 Hamada et al. Apr 2005 A1
20050098134 Nishimura et al. May 2005 A1
20050100701 Hamada et al. May 2005 A1
20050115744 Griffin et al. Jun 2005 A1
20050188942 Hamada et al. Sep 2005 A1
Foreign Referenced Citations (304)
Number Date Country
2009582 Aug 1990 CA
643 034 Mar 1937 DE
19507086 Sep 1996 DE
19507086 Sep 1996 DE
197 04 224 Aug 1997 DE
198 15 989 Oct 1999 DE
198 25 860 Dec 1999 DE
19825860 Dec 1999 DE
100 17 459 Oct 2000 DE
100 61 397 May 2002 DE
101 58 683 Jun 2003 DE
103 18 135 Nov 2003 DE
10337559 Mar 2005 DE
0 286 996 Oct 1988 EP
0 291 006 Nov 1988 EP
0 299 785 Jan 1989 EP
0308143 Mar 1989 EP
0 333 416 Sep 1989 EP
0378378 Jul 1990 EP
0384772 Aug 1990 EP
0388800 Sep 1990 EP
0392125 Oct 1990 EP
0398985 Nov 1990 EP
407977 Jan 1991 EP
0 435 312 Jul 1991 EP
0474369 Mar 1992 EP
0 500 253 Aug 1992 EP
0511153 Oct 1992 EP
0 529 327 Mar 1993 EP
0392125 Mar 1993 EP
0546824 Jun 1993 EP
0308143 Nov 1993 EP
0573943 Dec 1993 EP
0619504 Oct 1994 EP
0621136 Oct 1994 EP
0624353 Nov 1994 EP
0624354 Nov 1994 EP
0378378 Jan 1995 EP
0651069 May 1995 EP
0652301 May 1995 EP
0656458 Jun 1995 EP
0 661 470 Jul 1995 EP
0396603 Jun 1996 EP
0388800 Dec 1996 EP
0 759 519 Feb 1997 EP
0474369 Mar 1997 EP
0 818 622 Jan 1998 EP
0652301 Jan 1998 EP
0826790 Mar 1998 EP
0842754 May 1998 EP
0 870 820 Oct 1998 EP
0816112 Oct 1998 EP
0882759 Dec 1998 EP
0893677 Jan 1999 EP
0624353 Feb 1999 EP
0656458 Feb 1999 EP
0 905 221 Mar 1999 EP
0 905 419 Mar 1999 EP
0647318 Mar 1999 EP
0651069 Mar 1999 EP
0 731 190 May 1999 EP
0949200 Oct 1999 EP
0845154 Nov 1999 EP
0624354 Dec 1999 EP
0582676 Mar 2000 EP
1063085 Dec 2000 EP
1 067 211 Jan 2001 EP
0850126 Jan 2001 EP
1076087 Feb 2001 EP
1078736 Feb 2001 EP
1109196 Jun 2001 EP
0778902 Sep 2001 EP
1 154 012 Nov 2001 EP
0826790 Nov 2001 EP
1034320 Dec 2001 EP
0850133 Jan 2002 EP
0893677 Jan 2002 EP
1184480 Mar 2002 EP
1190791 Apr 2002 EP
1219464 Jul 2002 EP
1 233 054 Aug 2002 EP
0971812 Oct 2002 EP
1018291 Oct 2002 EP
1281513 Feb 2003 EP
1 300 608 Apr 2003 EP
0950123 May 2003 EP
0882759 Jun 2003 EP
1 338 641 Aug 2003 EP
1340605 Sep 2003 EP
1365141 Nov 2003 EP
1083946 Dec 2003 EP
1078736 Jan 2004 EP
1378271 Jan 2004 EP
0757615 Mar 2004 EP
0842754 Mar 2004 EP
1 411 145 Apr 2004 EP
0862395 Apr 2004 EP
1 418 353 May 2004 EP
1440775 Jul 2004 EP
1445119 Aug 2004 EP
1475557 Nov 2004 EP
1481699 Dec 2004 EP
1482190 Dec 2004 EP
1498597 Jan 2005 EP
1 510 594 Mar 2005 EP
1311885 Mar 2005 EP
1512781 Mar 2005 EP
1183470 Apr 2005 EP
2 669 689 May 1992 FR
768226 Feb 1957 GB
1005638 Oct 1988 GB
2338716 Dec 1999 GB
0990532 Mar 2001 IE
62-111106 May 1987 JP
63-21209 Jan 1988 JP
63-288994 Nov 1988 JP
5-70879 Mar 1993 JP
5-36004 May 1993 JP
5-42616 Jun 1993 JP
6-264993 Sep 1994 JP
6-294307 Oct 1994 JP
7-63135 Mar 1995 JP
7-90553 Apr 1995 JP
7-103238 Apr 1995 JP
07-118832 May 1995 JP
7-41386 Oct 1995 JP
7-286696 Oct 1995 JP
8-14014 Jan 1996 JP
8-61499 Mar 1996 JP
9-20981 Jan 1997 JP
52006318 Jan 1997 JP
253770 Sep 1997 JP
10-088369 Apr 1998 JP
10-265790 Oct 1998 JP
10-298440 Nov 1998 JP
11-22423 Jan 1999 JP
11-190406 Jul 1999 JP
11-292629 Oct 1999 JP
11-294118 Oct 1999 JP
11-333773 Dec 1999 JP
2000-88104 Mar 2000 JP
2000-119843 Apr 2000 JP
2000-504089 Apr 2000 JP
2000-297373 Oct 2000 JP
2000-327484 Nov 2000 JP
2000-339083 Dec 2000 JP
2001-62605 Mar 2001 JP
2001-64005 Mar 2001 JP
2001-93141 Apr 2001 JP
2001-172766 Jun 2001 JP
2001-172766 Jun 2001 JP
2001-192864 Jul 2001 JP
2001-269938 Oct 2001 JP
2001-280236 Oct 2001 JP
2002-265968 Sep 2002 JP
2002-309912 Oct 2002 JP
2002-332571 Nov 2002 JP
2003-13163 Jan 2003 JP
2003-13799 Jan 2003 JP
2003-25117 Jan 2003 JP
2003-28174 Jan 2003 JP
2003-088939 Mar 2003 JP
2003-113941 Apr 2003 JP
2003-147508 May 2003 JP
2004-36788 Feb 2004 JP
2005-68529 Mar 2005 JP
1770350 Oct 1992 RU
2004586 Dec 1993 RU
2153782 Jul 2000 RU
WO8906707 Jul 1989 WO
WO8906708 Jul 1989 WO
WO8906338 Jul 1989 WO
WO9202602 Feb 1992 WO
WO9206843 Apr 1992 WO
WO9219425 Nov 1992 WO
WO9321288 Oct 1993 WO
WO9321289 Oct 1993 WO
WO9324828 Dec 1993 WO
WO9520253 Jul 1995 WO
WO9529044 Nov 1995 WO
WO9529273 Nov 1995 WO
WO9531584 Nov 1995 WO
WO9604485 Feb 1996 WO
WO9605333 Feb 1996 WO
WO 9605942 Feb 1996 WO
WO9605942 Feb 1996 WO
WO9606961 Mar 1996 WO
WO9612389 Apr 1996 WO
WO9624488 Aug 1996 WO
WO9640446 Dec 1996 WO
WO9707531 Feb 1997 WO
WO9710093 Mar 1997 WO
WO9710940 Mar 1997 WO
WO9714555 Apr 1997 WO
WO9716138 May 1997 WO
WO9802715 Jan 1998 WO
WO9812994 Apr 1998 WO
WO9813528 Apr 1998 WO
WO9847141 Oct 1998 WO
WO9909547 Feb 1999 WO
WO9912404 Mar 1999 WO
WO9914512 Mar 1999 WO
WO9916371 Apr 1999 WO
WO9922694 May 1999 WO
WO9927157 Jun 1999 WO
WO 9929477 Jun 1999 WO
WO9929477 Jun 1999 WO
WO9931557 Jun 1999 WO
WO9934385 Jul 1999 WO
WO9946847 Sep 1999 WO
WO9954520 Oct 1999 WO
WO9954934 Oct 1999 WO
WO9957743 Nov 1999 WO
WO9962077 Dec 1999 WO
WO 9962572 Dec 1999 WO
WO9962572 Dec 1999 WO
WO 0022613 Apr 2000 WO
WO 0024554 May 2000 WO
WO 0025410 May 2000 WO
WO 0028142 May 2000 WO
WO 0033051 Jun 2000 WO
WO 0035000 Jun 2000 WO
WO 0044032 Jul 2000 WO
WO 0047402 Aug 2000 WO
WO 0055385 Sep 2000 WO
WO 0056127 Sep 2000 WO
WO 0056393 Sep 2000 WO
WO 0062327 Oct 2000 WO
WO 0068451 Nov 2000 WO
WO 0075517 Dec 2000 WO
WO 0078504 Dec 2000 WO
WO 0105917 Jan 2001 WO
WO 01006033 Feb 2001 WO
WO 0114736 Mar 2001 WO
WO 0114745 Mar 2001 WO
WO 0126862 Apr 2001 WO
WO 0137631 May 2001 WO
WO 0140537 Jun 2001 WO
WO 0147451 Jul 2001 WO
WO 0159544 Aug 2001 WO
WO 0161182 Aug 2001 WO
WO 0161719 Aug 2001 WO
WO 0162372 Aug 2001 WO
WO 0163639 Aug 2001 WO
WO 0167834 Sep 2001 WO
WO 0179583 Oct 2001 WO
WO 0180224 Oct 2001 WO
WO 02006875 Jan 2002 WO
WO 0213188 Feb 2002 WO
WO 0224601 Mar 2002 WO
WO 0224603 Mar 2002 WO
WO 0224970 Mar 2002 WO
WO 0232625 Apr 2002 WO
WO 0244440 Jun 2002 WO
WO 02054454 Jul 2002 WO
WO 02062714 Aug 2002 WO
WO 02073021 Sep 2002 WO
WO 02080996 Oct 2002 WO
WO 02085237 Oct 2002 WO
WO 02090461 Nov 2002 WO
WO 02097289 Dec 2002 WO
WO 03009978 Feb 2003 WO
WO 03013990 Feb 2003 WO
WO 03020329 Mar 2003 WO
WO 03021731 Mar 2003 WO
WO 03031543 Apr 2003 WO
WO 03046508 Jun 2003 WO
WO 03054876 Jul 2003 WO
WO 03076309 Sep 2003 WO
WO 03078679 Sep 2003 WO
WO 03091758 Nov 2003 WO
WO 03095009 Nov 2003 WO
WO 03105134 Dec 2003 WO
WO 2004001804 Dec 2003 WO
WO 2004004998 Jan 2004 WO
WO 2004019809 Mar 2004 WO
WO 2004024206 Mar 2004 WO
WO 2004026359 Apr 2004 WO
WO 2004026500 Apr 2004 WO
WO 2004036169 Apr 2004 WO
WO 2004036292 Apr 2004 WO
WO 2004038701 May 2004 WO
WO 2004043631 May 2004 WO
WO 2004048126 Jun 2004 WO
WO 2004067466 Aug 2004 WO
WO 2004068530 Aug 2004 WO
WO 2004071670 Aug 2004 WO
WO 2004072959 Aug 2004 WO
WO 2004078424 Sep 2004 WO
WO 2004084773 Oct 2004 WO
WO 2004088113 Oct 2004 WO
WO 2005010596 Feb 2005 WO
WO 2005011744 Feb 2005 WO
WO 2005014760 Feb 2005 WO
WO 2005014882 Feb 2005 WO
WO 2005016620 Feb 2005 WO
WO 2005021851 Mar 2005 WO
WO 2005025844 Mar 2005 WO
WO 2005034791 Apr 2005 WO
WO 2005037144 Apr 2005 WO
WO 2005037985 Apr 2005 WO
WO 2005040451 May 2005 WO
WO 2005042064 May 2005 WO
WO 2005047737 May 2005 WO
Related Publications (1)
Number Date Country
20050118426 A1 Jun 2005 US
Continuations (1)
Number Date Country
Parent 09545181 Apr 2000 US
Child 11033176 US