The term “Action”, in firearms terminology, is the mechanism that handles the ammunition (loads, locks, fires, and extracts the cartridges) or the method by which that reloading mechanism works.
The term Slide Action refers to reloading and extracting a spent case from a repeating firearm in which a new round is brought from the magazine into the breech by a linear, parallel to the barrel, motion of an exterior to the barrel hand guard.
A Forend or Forend Grip, in firearms terminology, is a frontal handguard, static or mobile, to place the Supporting hand of the shooter.
A self-disconnection mechanism, or trigger disconnector. In firearms terminology the disconnect member links the trigger and the hammer in the cocked position, but is disconnected from the trigger when the hammer is released. The function of the disconnector is to stop the hammer even though the trigger is still pulled, preventing the hammer from immediately following the slide or bolt.
The term “Driver” is a part in a mechanism that receives power directly and transmits motion to other parts.
The term “Tongue” refers to a lateral projection plate to serve as connector or support.
The term “Charge” refers to the action required to load a new cartridge into the chamber of the firearm barrel and close the breech, leaving the weapon in a condition ready to fire.
The term “Supporting hand” refers to the hand supporting a rifle at the front close to the muzzle.
The term “Controlling hand” refers to the hand grabbing a rifle at the rear handle and pulling the trigger.
The term “Breechward” is a direction towards the breech of the rifle.
The term “Muzzleward” is a direction towards the muzzle of the rifle.
The term OEM means Original Equipment Manufacturer.
The terms Rod and Push-Pull bar are used indistinctively.
Terms such as “under,” “over,” “in front of,” “the back of the gun,” or “behind,” “anterior,” “posterior,” “downward,” “upward,” or “transverse,” are used here as somebody firing a gun would understand them, which is by reference to the longitudinal or firing axis of the barrel when the gun is held in the usual horizontal attitude.
The term “Slide Action” refers to reloading a repeating firearm in which a new round is brought from the magazine into the breech by pulling and pushing a supporting hand, applying motion to the Forend in line with the barrel.
The term Forend Grip and Sliding Hand guard are used indistinctively.
The term Bore is the hollow part inside a tube.
The term Flange is a projecting flat rim, collar, or rib on an object, serving to strengthen or attach to maintain position on a rail or supportive structure
A polygonal chain, in geometry, is a connected series of line segments. More formally, a polygonal chain may also be called a polygonal curve. Every nontrivial monotone polygonal chain is open.
A polygonal Line can be defined as a geometric object “consisting of a number of points (called vertices) and an equal number of line segments.
A concave polygon, the polygon is concave if all of its interior angles must be more than 180 degrees.
A polygon is open when the segments do not all connect at the beginning and end. That is, if we draw the polygon starting at one point, we finish drawing at a different point.
A polygon is closed when the segments do connect at the beginning and end. That is, you start to draw the line at a point and finish at the same point.
A ground is a nominally rigid body that acts as the reference for all motions of the other bodies, and attached to it is the power input device, usually a motor, and another joint.
Structurally, Ground or Grounded means temporarily mechanically affixed to a main member receiver or barrel of the firearm in a manner that it cannot move relative to it.
Bending is the curvature that appears in a beam or column when a load is applied perpendicular to the long axis of a beam/column. The load causes the beam/column to bend hence the name.
Buckling is a form of failure when the beam or column is subjected to an axial load which exceeds its tensile strength parallel to its long axis.
Buckling and bending may be present in the failure of a bar when loaded axially like a column, such as the case of the rod part number (80). In all previous Slide Action used in the past, especially when the ratio bar diameter/bar length is very small, sometimes the bars or plates presented Buckling.
Buckling and bending occurs abruptly when a big axial load is applied to a slender bar, where the slender bar is as well possible subject of vibration.
In 1757, Euler derived a formula that gives the maximum axial load that a long, slender, ideal column can carry without buckling. An ideal column is one that is perfectly straight, homogeneous, and free from initial stress. The maximum load, sometimes called the critical load, causes the column to be in a state of unstable equilibrium; that is, the introduction of the slightest lateral force will cause the column to fail by buckling.
This invention generally relates to a firearm having a collection of mechanisms and arrays, and subassemblies conceived to ease the use, manufacturing and installation of Slide Action operating system in firearms by cancelling the gas action operating systems, and substituting them by a mechanical slide action, in a manner that, the invention can be implanted into existing semi-automatic gas operated rifles, or into rifles in future production conserving entirely all the shapes, firing mechanisms, receivers, barrel and external shapes.
This flexible solution allows manufacturers to offer an alternative solution to quickly respond to market demands trends without incurring in costly modifications in the production lines.
Pervious individual Rifle owners can adapt their gas actuated firearms by suspending the semi-automatic feature, and easily become legally compliant by reducing the rate of fire to that of a hand operated action. The modular design of certain firearms like AR 15 make possible to exchange the entire Upper receiver and barrel subassembly in less than a minute. Many shooters own several uppers with different barrel types for diverse uses.
Firearm experts define a slide action rifle or shotgun as one in which the handgrip can be pumped back and forth in order to eject a spent round of ammunition and to chamber a fresh one. It is much faster than a bolt-action and somewhat faster than a lever-action, as it does not require the trigger hand to be removed from the trigger whilst reloading. When used in rifles, this action is also commonly called a slide action.
With a Slide-Action firearm, the action is manually operated by a movable forend that goes manually driven backwards and forwards to eject, extract, and chamber a round of ammunition. Pump-actions are usually associated with shotguns, but several examples of a pump-action rifle is the Remington Model 7600 series, the Remington7615P in 0.223 Rem. Pump action firearms are largely insensitive to ammunition quality and therefore provide outstanding dependability.
The first slide action patent was issued to Alexander Bain of Britain in 1854. Modern pump-action designs are a little slower than a semi-automatic shotgun, but the pump-action offers greater flexibility in selection of cartridges, allowing the shooter to mix different types of loads and for using low-power or specialty loads.
Semi-automatic rifles must use some of the energy of each round fired to cycle their actions, meaning that they must be loaded with shells powerful enough to reliably cycle. The slide action avoids this limitation. In addition, like all manual action guns, pump-action guns are inherently more reliable than semi-automatic guns under adverse conditions, such as exposure to dirt, sand, or climatic extremes. Thus, until recently, military combat shotguns were almost exclusively pump-action designs.
Recently new patents have been issued like Troy, US 20150089854 A1; and David Finlay, US 20150089854 A1, and assigned to Smith & Wesson developing pump action rifles having an external appearance or looking similar to the very popular AR 15 semi-automatic rifles, BUT in both cases the bolt carrier, and incorporated bolt locking mechanisms are internal to the receiver, within a by design receiver, and is completely different than the OEM mechanism of the famous AR 15. The action lock mechanism and action takes place inside the receiver of the firearm. A more recently awarded patent is number U.S. Pat. No. 9,638,481 of 2017 May 2002 given to Frank Marrano, achieves similar results. However the mechanism is completely unlike and differs drastically from this Application in the fact that The Sliding Locking Mechanism, though it is external to the OEM receiver, it differs in many ways like surrounding the barrel entirely, and in turn, surrounded by external hand guards mechanism with a locking device, which in turn makes it very internal and complicated. Many more differences exist,
The present invention Application, in opposition, advantageously maintains all the OEM internal mechanisms of the AR 15 intact inside the lower receiver, without any alteration, preserving the integrity of both the original AR 15 upper and lower receiver, it only adds and substitute components, external to the upper receiver, in a manner in which any conventional AR 15, M4 or HK 416, or M16 or SIG 516 may be converted into a slide action only, depriving it from the semi-automatic gas operation in order to comply with some States regulations which ban the sales, position and operation of semi-automatic rifles of the Semiautomatic category.
Applicant has been involved in the topic of providing innovation to the use of combined simultaneous operation of sub automatic gas operated systems, and manually actuated slide actions mechanisms. Many of the used parts in said developments are used valuably in the present invention application, like supports, A protective structured guiding tube and several more.
The relevant work is noticeable in PPA patent of 61/686,226 filed on Apr. 2, 2012; then converted into U.S. Pat. No. 9,188,401 B2; followed by patent application Ser. No. 14/944,203, filed on Nov. 17, 2015, still in the prosecution process in the RCE status.
The present Application is a more specific development to provide solutions to new circumstances involving the possible trends related to legal regulations related to firearms acquisitions and ownership of semi-automatic rifles.
Some parts and concepts herein presented have been inherited from the applicant's previous inventions, like for example the use of an external structural protective tube guide (70) to strengthen and protect from buckling the slender action push-pull bar (80) always needed in all slide action mechanisms.
Slide Action mechanisms for firearms applications are old. The first slide action patent was issued to Alexander Bain of Britain in 1854.
Older pump-action shotguns are often faster than modern semi-automatic shotguns, as they often did not have a trigger disconnector, and were capable of firing a new round as fast as the pump action was cycled, with the trigger held down continuously. This technique is called a “slamfire”, and was often used in conjunction with the M1897 in the First World War's trench warfare.
Modern pump-action designs are a little slower than a semi-automatic shotgun, but the pump-action offers greater flexibility in selection of shot shells, allowing the shooter to mix different types of loads and for using low-power or specialty loads. Semi-automatic shotguns must use some of the energy of each round fired to cycle their actions, meaning that they must be loaded with shells powerful enough to reliably cycle. The pump-action avoids this limitation. In addition, like all manual action guns, pump-action guns are inherently more reliable than semi-automatic guns under adverse conditions, such as exposure to dirt, sand, or climatic extremes. Thus, until recently, military combat shotguns were almost exclusively pump-action designs.
Melvin Johnson invented the M 1941 rifle conceived a short rotary bolt. The rifle he designed was a short-recoil system with a multi-lug rotating bolt (which was the direct ancestor of the AR bolt design of E. Stoner) similar based breech closing systems are present in numerous modern rifles.
The cycling time of a slide action or pump-action is quite short. The manual operation gives a pump-action the ability to cycle rounds of broadly varying power that a gas or recoil operated firearm would fail to cycle. The simplicity of the pump-action relative to a semi-automatic design also leads to improved durability and lower cost. It has also been noticed that the time taken to work the action allows the operator to identify and aim on a new target. All the advantages of Slide Action shotguns are applicable to Slide action rifles. Others herein claimed for rifles, like the ones that are related to the position of the locker mechanism at the forend, nested in the slider forend, which is claimed in the present application are applicable to shotguns.
An advantage of the pump-action over the bolt-action is its ease of use by both left- and right-handed users: like lever-actions, pump-actions are frequently recommended as ambidextrous in sporting guidebooks. However, most are not truly ambidextrous, as the spent casing is ejected out the side in most designs.
The first application of the slide action operation was for shotguns, and is mentioned here to highlight that the addition and removal certain features has improved to be safely used now in rifles. A disconnector mechanism was added. The Lifter mechanism was suppressed for rifles, and removable magazine feature to fed, were installed, permitting the use in rifles.
Like most lever-action rifles, most slide-action shotguns and rifles do not use a detachable magazine, most use a tubular magazine. This makes for slow reloading, as the cartridges have to be inserted individually into the firearm. However, some slide action shotguns and rifles, such as the Russian Zlatoust RB-12, Italian Valtro, and the American Remington 7600 series use detachable box magazines.
The Magazine tube under the barrel serves as a guide for sliding a movable forend for recharging. Nearly all slide-actions shotguns use a back-and-forward motion of the forend to cycle the action. The forend is connected to the bolt by one or two bars; two bars are considered more reliable because it provides symmetric forces on the bolt and pump and reduces the chances of bending, or Buckling.
There are precedents where rifles have been produced in semi-automatic versions and in slide action versions like the well-known family of Remington rifles. However they are well different internally.
Years later Remington evolved to produce a semi-automatic rifle based in the 7600 and produced the M7400 1952-1981 replaced by M750 synthetic 760 pump Action. Recently the 7600 evolved to become a new rifle Remington “7615” Pump Action Rifle which is basically the same 7600 without any semiautomatic features and restrained to be a Slide Action.
This configuration surpasses the legal restrictions imposed by the Australian legislation related to the import, possession and sales of rifles which ban the semi-automatic rifles.
The motion of the bolt, back and forth in a tubular magazine model, will also operate the elevator, which is a separate mechanism that lifts the shells from the level of the tubular magazine to the level of the barrel. After firing a round, the bolt is unlocked by a necessary manual movement of the shooter, and the forend is free to be moved rearwards. The shooter pulls back on the forend to begin the operating cycle. The bolt unlocks and begins to move to the rear, which extracts and ejects the empty shell from the chamber, cocks the hammer, and begins to load the new shell. In a tubular magazine design, as the bolt moves rearwards, a single shell is released from the magazine, and is pushed backwards to come to rest on the elevator.
In Shotguns, as the forend reaches the rear and begins to move forward, at the motion of the shooter's hand, the elevator lifts up the shell, lining it up with the barrel. As the bolt moves forward, the round slides into the chamber, and the final portion of the forend's travel locks the bolt into position. A pull of the trigger will fire the next round, where the cycle begins again.
Most pump-action firearms do not have any positive indication that they are out of ammunition, so it is possible to complete a cycle and have an empty chamber. The risk of running out of ammunition unexpectedly can be minimized in a tubular magazine firearm by topping off the magazine by loading new rounds to replace the rounds that have just been fired. This is especially important when hunting, as many locations have legal limits on the magazine capacity: for example, three rounds for shotguns and five rounds for rifles.
Modern pump shotgun designs, such as the Remington 870 and Mossberg 500, have a safety feature called a trigger disconnector, which disconnects the trigger from the sear as the bolt moves back, so that the trigger must be released and pulled again to fire the shotgun after it closes.
Many early pump shotguns, such as the Winchester 1897, did not have trigger disconnectors, and would, if the trigger were held back, fire immediately upon closing.
Due to the higher rate of fire that this allows, some shooters prefer models without this disconnector feature, such as the Ithaca 37, Stevens Model 520/620, and Winchester Model 12. All the latter named are Slam Action.
As an example of the multiple rifles which can accept the parts array pertinent to the present application, all parts described in the following Figures Description, pertain to an AR-15 standard rifle platform.
All parts shown conform a rigid set of parts, like a Solid Subassembly, with Zero degrees of motion relative to each other. All behaving like a solid unit wherein all parts move linearly in the same direction, at the same speed. The only part that has any motion relative to the rest of parts of the assembly is the Locking Lever (96) which is allowed to rotate few degrees relative to the pivot pin (96 C).
The entire subassembly shown in this drawing is also referred as the “Sliding Action Subassembly Train” or “Train of Action” in this application. Notice that all the parts constituting the modification array of parts move and are placed externally to the receiver and do not alter the existing firing mechanism of the existing firearm, nor they move surrounding the barrel or internally to any hand guard.
The (31 A) lateral exterior projection plate moves linearly sliding along the slot cut (70A) of the structural supporting guide tube (70) preventing any rotation of the subassembly. The (31 A) lateral exterior projection plate is placed in a horizontal plane when completely assembled.
The Screw (31D) has as well as Conical Sector Shoulder (31 K) to contact a (31E) Conical Bed of the Rod (80) and press the opposite side Rod (80) against the internal wall of the Bore (31S), clamping very firmly and exerting a high pressure completely securing the fixation the Rod 80 and the DRIVER (31), and additionally the pinning clamp and pin device to positively affix the rod bar to the rod diver
The Driver (31) has a lateral Exterior Projection Post connector Support Plate (31A) to provide exterior connection to the subassembly shown in
A list of innovative conceptions follows, wherein the order in which they are presented does not signify the importance relative to the other objectives or goals. However they are needed to be concurrent and interactive to support the above mentioned primary objective.
In the past it was frequently observed that the element connecting the movable forend Slider with the bolt carrier, often bent while pulling back strongly to eject an expanded or partially locked shell. Sometimes the connecting rod broke or drastically bent in the form of sudden Buckling.
Buckling is a form of failure when the beam or column is subjected to an axial load which exceeds its tensile strength parallel to its long axis.
Buckling and bending may be present in the failure of a bar when loaded axially like a column, such as the case of the push-pull rod part number (80). In all previous Slide Action used in the past, especially when the ratio bar diameter/bar length is very small, sometimes the bars or plates presented Buckling.
Buckling is characterized by a sudden sideways failure of a structural member subjected to high compressive stress. As an applied load is increased on a member, such as a column, it will ultimately become large enough to cause the member to become unstable and is said to have buckled.
So, in order to prevent this happening while needing to use a relatively small diameter push pull bar (80), it is necessary to create a preventive array of parts as shown in
Inside the tube (70) the pull-push bar (80) slides linearly altogether with the protective rings (80 C) attached. The rings (80C), attached to the push pull bar (80) displace linearly close to the bore diameter of the Structural Tube (70) at with a small clearance so that the slightest bending of the push pull bar (80) will force the external side of the ring to touch the internal bore of the strong structural tube, thus preventing the subsequent bending and buckling while the small diameter bar (80) is axially overloaded. Alternatively, the cylindrical rings (80C) may be fitted to contact tightly the inner bore of the Structural supporting tube guide (70), and said rings leaving a small gap between it and the push-pull rod actuator (80) to allow the free sliding motion, bur close enough to correct any further bending and buckling.
An array of parts to reinforce the strength of the push pull bar (80) function without significantly increasing either the size of the subassembly or its weight.
Another fulfilled Goal is to create an structural supporting guide tube (70) having a longitudinal axis parallel to the axis of the barrel but not in contact with said barrel as show in Figures.
Another fulfilled Goal is to create a multifunctional Driver part that will completely affix to the push-pull bar (80), being easily removable and locked from the exterior, of the Tube (70) and having a projected plate to the exterior to receive Force and motion originated from the external force of the shooter's hand. Such multi-functional part is the Rod Driver (31). As described in all the related figures.
Another fulfilled Goal is to provide a Structural stationary guiding handguard (94), being a strong beam member totally constrained in motion relative to the receiver and the barrel (14), having the shape of an open concave polygon line, as described as example, in the
Another fulfilled goal is to provide a set of supports for the stationary handguard (94), and to the structural guide tube (70) in a manner in which they affix to OEM existing shapes and dimensions of the receiver and the barrel without machining alterations.
Another fulfilled goal is to provide a mobile forend slider (95), having a shape capable of sliding linearly backwards and forwards in the exterior of the structural handguard (94), and to securely accommodate, integrally, inside one of the exterior stamped rails (95 A), an external pivoting locker lever (96), to execute a lock-un lock function.
Another fulfilled goal is to provide an exterior connection between the pivoting locker lever (96) member, and the laterally projected plate (31A) of the driver (31), by means of introducing a Connector post (97) through the hole (31 B) of (31A) plate and securing the post in Threaded hole (96 B) of pivoting locking lever (96). This connection unites the linear action of the rod driver (31) and all parts subsequently attached with the locking lever, configuration a set of pieces which behave as a solid subassembly as well depicted in
With all the above exposed, it is evident that an innovative advantageous array of parts is making it possible to be used to transforming a Gas operated rifle design, like an AR-15, as an example, into an slide action manually actuated rifle.
Officially it is the same rifle, as none of the firing mechanisms or the lower receiver has been altered, conserving the original self-disconnecting feature. However the semi automatic gas actuated feature is being suppressed, transforming the category to a NON-automatic, manually operated rifle, which in all lawfulness it is not subject of the banning applied by some stated to the semi-automatic rifles.
The Internal Sliding Action Subassembly, as depicted in
The External Sliding Action Subassembly, as depicted in
The Complete Sliding Action Train, which is the union of the latter two Subassemblies as depicted in
Another fulfilled goal is to create An External To the Receiver Locking Action which occurs by the concurrence of all the herein described elements in this application and in the drawings. All previous patented pump action mechanism arrays have the locking action parts and motion housed inside the firearm receivers, normally close to the trigger and is disposed in a manner where the exterior lever to unlock the pump action is performed by the same hand which controls the trigger (the controlling hand).
In opposition the past seen customary mode, this application organizes the array of mechanisms in a manner in which the locking action of the linkage takes place exteriorly to the receiver, and more precisely in a mobile slidable array of mechanisms located in handguards and actuated by the supporting hand of the shooter. The locking lever arm (96) is mobile as well and the locking release takes place upon the action of a finger of the supporting hand of the shooter. Even the locking lever (96) actuator is in the very exterior of the hand guard.
All the drawings provided are in concordance with the goals exposed.
All the individual parts that constitute the Internal Sliding Action Subassembly are joint together in a manner that every single part has zero degrees of freedom relative to the joining part; and that the Complete Slide Action Train can be considered as a solid part moving along parallel axes to the axis of the barrel (14 A).
This array makes possible that the input force exerted over the sliding forend (95) by the shooters hand is transmitted to all the attached members of the kinematic chain, and to the Front face (13 C) of the bolt to Open and close the breech of the barrel. All of the above without interfering or modifying the OEM existing firing mechanisms housed in the lower receiver.
The actual locking action takes place due to the simultaneous intrusion of the Lock Action Intrusive Lug Projection (96F) of the sprigged biased Lock Action Lever Arm (96) into Both of the Through Cut Grounded Window (94B) of the Frontal Main Structural Grounded Stationary Handguard (94), and into the Through Cut Mobile Window (95 B) of External Sliding Handguard or Mobile Forend (95). The coincident position of both windows takes place only when the External Sliding Handguard or Mobile Forend (95) is in the most forward position and the breech is in battery. At that point, the rearwards motion of (95) is impossible due to the interference of Lock Action Intrusive Lug Projection (96F) into both windows making impossible the rearwards motion of the
This Application claims the benefit of Provisional Patent Application Ser. No. 62/497,414 filed on Nov. 17, 2016 by the present inventor; and of Provisional Patent Application Ser. No. 61/686,226 filed on Apr. 2, 2012 by the present Applicant. Then Non Provisional Application Ser. No. 13/855,038 filed on Apr. 2, 2013, Now U.S. Pat. No. 9,188,401 of Nov. 17, 2015, Named “Combined direct drive gas piston system, and frontal, ambidextrous, non-reciprocating, charging system for auto loading rifle” by the present Applicant.