Slide-activated cutting assembly

Information

  • Patent Grant
  • 7384421
  • Patent Number
    7,384,421
  • Date Filed
    Friday, September 30, 2005
    19 years ago
  • Date Issued
    Tuesday, June 10, 2008
    16 years ago
Abstract
An endoscopic bipolar forceps is provided. The forceps includes a housing, a shaft, a drive assembly, a handle assembly and a slide activated cutting assembly. The shaft is affixed to the housing and comprises an end effector assembly comprising two jaw members at its distal end. The drive assembly is configured to move the end effector assembly. The handle assembly is in mechanical cooperation with the drive assembly. The slide-activated cutting assembly is disposed at least partially within the housing and move a knife rod comprising a knife blade at its distal end to cut tissue along a tissue seal. A source of electrosurgical energy is adapted to connect to each jaw member to enable them to conduct energy through tissue to affect a tissue seal.
Description
BACKGROUND

The present disclosure relates to an electrosurgical forceps and more particularly, the present disclosure relates to an endoscopic bipolar electrosurgical forceps for sealing and/or cutting tissue.


TECHNICAL FIELD

Electrosurgical forceps utilize both mechanical clamping action and electrosurgical energy to affect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopes and endoscopic instruments for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.


Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from three millimeters to 12 millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.


Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue.


It is thought that the process of coagulating vessels is fundamentally different than electrosurgical vessel sealing. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and/or dried. “Vessel sealing” or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass. Coagulation of small vessels is sufficient to permanently close them, while larger vessels need to be sealed to assure permanent closure.


In order to effectively seal larger vessels (or tissue) two predominant mechanical parameters should be accurately controlled—the pressure applied to the vessel (tissue) and the gap distance between the electrodes—both of which are affected by the thickness of the sealed vessel. More particularly, accurate application of pressure is important to oppose the walls of the vessel; to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal. It has been determined that a typical fused vessel wall is optimum between about 0.001 inches and about 0.006 inches. Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.


With respect to smaller vessels, the pressure applied to the tissue tends to become less relevant whereas the gap distance between the electrically conductive surfaces becomes more significant for effective sealing. In other words, the chances of the two electrically conductive surfaces touching during activation increases as vessels become smaller.


Many known instruments include blade members or shearing members which simply cut tissue in a mechanical and/or electromechanical manner and are relatively ineffective for vessel sealing purposes. Other instruments rely on clamping pressure alone to procure proper sealing thickness and are not designed to take into account gap tolerances and/or parallelism and flatness requirements which are parameters which, if properly controlled, can assure a consistent and effective tissue seal. For example, it is known that it is difficult to adequately control thickness of the resulting sealed tissue by controlling clamping pressure alone for either of two reasons: 1) if too much force is applied, there is a possibility that the two poles will touch and energy will not be transferred through the tissue resulting in an ineffective seal; or 2) if too low a force is applied the tissue may pre-maturely move prior to activation and sealing and/or a thicker, less reliable seal may be created.


It has been found that the pressure range for assuring a consistent and effective seal is between about 3 kg/cm2 to about 16 kg/cm2 and, preferably, within a working range of about 7 kg/cm2 to about 13 kg/cm2. Manufacturing an instrument which is capable of providing a closure pressure within this working range has been shown to be effective for sealing arteries, tissues and other vascular bundles.


Various force-actuating assemblies have been developed in the past for providing the appropriate closure forces to affect vessel sealing. For example, one such actuating assembly has been developed by Valleylab Inc., a division of Tyco Healthcare LP, for use with Valleylab's vessel sealing and dividing instrument commonly sold under the trademark LIGASURE ATLAS®. This assembly includes a four-bar mechanical linkage, a spring and a drive assembly which cooperate to consistently provide and maintain tissue pressures within the above working ranges. The LIGASURE ATLAS® is presently designed to fit through a 10 mm cannula and includes a bi-lateral jaw closure mechanism which is activated by a foot switch. A trigger assembly extends a knife distally to separate the tissue along the tissue seal. A rotating mechanism is associated with a distal end of the handle to allow a surgeon to selectively rotate the jaw members to facilitate grasping tissue. Co-pending U.S. application Ser. Nos. 10/179,863 and 10/116,944 and PCT Application Ser. Nos. PCT/US01/01890 and PCT/US01/11340 describe in detail the operating features of the LIGASURE ATLAS® and various methods relating thereto. The contents of all of these applications are hereby incorporated by reference herein.


Certain surgical procedures necessitate the use of pistol-like forceps, while other procedures necessitate an in-line forceps to facilitate manipulation of vessels. For the in-line version, it would be difficult to use a conventional trigger or rotary knife actuation assembly to cut tissue.


It would be desirous to develop an endoscopic vessel sealing instrument which can be utilized for a variety of surgical procedures which may require both vessel sealing and subsequent division of tissue along the tissue seal. The instrument may include a simpler and more mechanically advantageous drive assembly to facilitate grasping and manipulating vessels and tissue. In addition and particularly with respect to in-line vessel sealing instruments, it may be desirous to manufacture an instrument which includes a sliding activation trigger to advance the cutting mechanism.


SUMMARY

According to an aspect of the present disclosure, an endoscopic bipolar forceps is provided. The forceps comprise a housing, a shaft, a drive assembly, a handle assembly and a slide-activated cutting assembly. The shaft defines a longitudinal axis, is affixed to the housing and comprises an end effector assembly at its distal end. The end effector assembly comprises two jaw members. The drive assembly is configured to move at least a portion of the end effector assembly. The handle assembly comprises a movable handle which forces a drive flange into mechanical cooperation with the drive assembly to move at least a portion of the end effector assembly. The slide-activated cutting assembly is disposed at least partially within the housing. The slide-activated cutting assembly moves a knife rod, which comprises a knife blade at its distal end, to cut tissue along a tissue seal. A source of electrosurgical energy is adapted to connect to each jaw member such that the jaw members are capable of conducting energy through tissue which is held therebetween. The electrosurgical energy is administered to seal the tissue.


In an exemplary embodiment, the slide-activated cutting assembly comprises a slide trigger configured to be pushed distally to move the knife rod distally. Further, the slide trigger may be pulled proximally to move the knife rod proximally.


It is envisioned for the slide trigger to include a generally arcuate-shaped finger rest.


It is contemplated for the slide-activated cutting assembly to comprise a knife slide which facilitates translation of the knife rod. A proximal portion of the knife slide is in mechanical engagement with the slide trigger. A distal portion of the knife slide is in mechanical engagement with the knife rod.


In an embodiment of the disclosure, the slide-activated cutting assembly further comprises a collar clamp operatively connected to the knife slide. The collar clamp helps maintain alignment of the knife slide during translation of the knife rod.


In an exemplary embodiment, the slide-activated cutting assembly includes a spring in mechanical engagement with the knife slide. The spring biases the knife slide in a proximal-most position.


It is envisioned that an amount of translation of the slide trigger substantially correlates to a resulting amount of translation of the knife rod. It is also envisioned that the amount of translation of the slide trigger indirectly correlates to a resulting amount of translation of the knife rod.


It is contemplated for the forceps to include a rotating assembly. In an exemplary embodiment, the rotating assembly rotates the jaw members about the longitudinal axis defined by the shaft.


In an embodiment of the disclosure, the forceps includes a switch disposed within the housing and in electromechanical cooperation with the source of electrosurgical energy. The switch allows a user to selectively supply bipolar energy to the jaw members to affect a tissue seal.


In an exemplary embodiment, the drive assembly comprises a reciprocating sleeve. Upon activation of the movable handle, the reciprocating sleeve translates to move a jaw member relative to the other jaw member. It is envisioned for the drive assembly to include at least one spring which biases the knife rod proximally.


A slide-activated cutting assembly for use with a surgical instrument is also disclosed. The slide-activated cutting assembly comprises a slide trigger and a knife assembly. The slide trigger comprises a flange. The knife assembly comprises a knife slide, a cutter collar, a knife rod and a collar clamp. The knife slide comprises a proximal portion which is in mechanical cooperation with the flange of the slide trigger and also comprises distal portion. The cutter collar is operatively connected with the distal portion of the knife slide. The knife rod extends distally from the cutter collar. The collar clamp maintains alignment of the knife assembly during translation of the knife rod and is positioned adjacent the cutter collar. The slide trigger and the knife assembly mutually cooperate to translate the knife rod upon translation of the slide trigger.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:



FIG. 1 is a perspective view of an endoscopic forceps according to an embodiment of the present disclosure;



FIG. 2 is an enlarged schematic cross-sectional view of the endoscopic forceps of FIG. 1, illustrating a slide-activated cutting assembly comprising a slide trigger;



FIG. 3 is an enlarged schematic cross-sectional view of the knife slide of FIG. 1 illustrating an alternate slide trigger;



FIG. 4A is an enlarged side view of a slide trigger of FIGS. 1 and 2;



FIG. 4B is an enlarged side view of the alternate embodiment of the slide trigger of FIG. 3;



FIG. 5 is an enlarged cross-sectional view of an end effector assembly for use with the slide-activated cutting assembly;



FIG. 6 is a perspective view of an endoscopic bipolar forceps as disclosed in prior art;



FIG. 7 is a cross-sectional view of the forceps of FIG. 6 as disclosed in prior art; and



FIG. 8 is a perspective view of an in-line surgical forceps according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the presently disclosed slide-activated cutting assembly will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein and as is traditional, the term “distal” refers to that portion which is farthest from the user while the term “proximal” refers to that portion which is closest to the user.


Referring initially to FIGS. 1-3, illustrations of a slide-activated cutting assembly of a forceps are shown. The slide-activated cutting assembly is generally referred to by reference numeral 320 and the forceps is generally referred to by reference numeral 300. The forceps 300 generally includes a housing 312, a shaft 314 defining axis “A-A,” the slide-activated cutting assembly 320, a handle assembly 430 and an end effector assembly 100. The forceps 300 may also include a rotation assembly 80 and a switch 200.


Although the majority of the figure drawings depict the slide-activated cutting assembly 320 for use in connection with endoscopic surgical procedures, the present disclosure may be used for more traditional open surgical procedures. For the purposes herein, the slide-activated cutting assembly 320 is described in terms of an endoscopic instrument, however, it is contemplated that an open version of the slide-activated cutting assembly 320 may also include the same or similar operating components and features as described below.


Referring to FIG. 1, the handle assembly 430 of the forceps 300 includes a fixed handle 450 and a movable handle 440. The fixed handle 450 is integrally associated with the housing 312 and the movable handle 440 is movable relative to the fixed handle 450. The movable handle 440 is operatively connected to the housing 312 and the fixed handle 450. Further details of the handle assembly 430 are discussed in commonly-owned U.S. patent application Ser. No. 10/460,926 and are hereby incorporated by reference herein.


With continued reference to FIG. 1, the rotation assembly 80 may be integrally associated with the housing 312 and may be rotatable approximately 180 degrees in either direction about the axis “A-A.” Further details of the rotation assembly 80 are discussed in commonly-owned U.S. patent application Ser. No. 10/460,926 and are hereby incorporated by reference herein.


As best seen in FIGS. 1 and 5, a proximal end 14 of the shaft 314 is in mechanical cooperation with the housing 312. The end effector assembly 100 is attached at a distal end 16 of the shaft 314 and includes a pair of opposing jaw members 110 and 120. The movable handle 440 of the handle assembly 430 is ultimately connected to a drive assembly (illustrated as reference numeral 150 in FIG. 7 depicting Prior Art) which, together, mechanically cooperate to impart movement of the jaw members 110 and 120 from an open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween. Further details of the drive assembly 150 and the end effector assembly 100 are discussed in commonly-owned U.S. patent application Ser. No. 10/460,926 and are hereby incorporated by reference herein.


It is envisioned that the switch 200 permits the user to selectively activate electrosurgical energy in a variety of different orientations, i.e., multi-oriented activation. As can be appreciated, this simplifies activation. Further details of the switch 200 are discussed in commonly-owned U.S. patent application Ser. No. 10/460,926 and are hereby incorporated by reference herein.


When the jaw members 110 and 120 are fully compressed about tissue, the forceps 300 is ready for selective application of electrosurgical energy and subsequent separation of the tissue. More particularly, as energy is being selectively transferred to the end effector assembly 100, across the jaw members 110 and 120 and through the tissue, a tissue seal forms isolating two tissue halves. At this point with other known vessel sealing instruments, the user removes and replaces the forceps 300 with a cutting instrument (not shown) to divide the tissue halves along the tissue seal. As can be appreciated, this is both time consuming and tedious.


As best seen in FIGS. 2 and 3, the slide-activated cutting assembly 320 is in operative engagement with the housing 312 and generally includes a slide trigger 321 and a knife assembly 340 which mutually cooperate to cut tissue. The slide trigger 321 of the slide-activated cutting assembly 320 includes a downwardly depending flange 322 dimensioned to mechanically cooperate with a proximal portion 331 of the knife slide 330 of the knife assembly 340. The slide trigger 321i may include a generally arcuate-shaped finger rest 324 which is designed to facilitate translation thereof by a user.


The knife assembly 340 comprises a knife slide 330, a cutter collar 334 and a collar clamp 350. A distal portion 332 of the knife slide 330 is operatively connected to the cutter collar 334 of the knife assembly 340. The collar clamp 350 is abuttingly positioned against or adjacent the cutter collar 334 and is designed to maintain alignment of the knife assembly 340 during translation of a knife rod 180.


With continued reference to FIGS. 2 and 3, the knife rod 180 is disposed within the shaft 314 which extends distally from the cutter collar 334 to support a knife blade 370 (or other cutting mechanism) and extends proximally through the collar clamp 350 to engage the knife slide 330. The shaft 314 is illustrated secured to a flange 352 which allows distal translation of the knife rod 180 within the shaft 314. It is envisioned that the support flange 352 also holds the shaft 314 in alignment along the axis “A-A.” The knife blade 370 is disposed at a distal end of the knife rod 180 for cutting tissue and will be explained in more detail below. A spring 335 may be employed to bias the knife assembly 340, in a proximal-most position relative to the housing 312 and the flange 352.


With continued reference to FIGS. 2 and 3, the knife assembly 340 includes a collar clamp 350 comprising clamps 350a and 350b which secure the distal portion 332 of the knife slide 330, such that distal actuation of the trigger assembly 320 forces the elongated rod 180 distally which, in turn, moves the knife blade 370 distally through tissue, for instance. To cut tissue, the user moves the slide trigger 321 distally to advance the knife slide 330. The clamps 350a and 350b prevent the cutter collar 334 from moving in an angular orientation with respect to axis “A-A,” thus preventing a binding effect of the cutter collar 334 on the knife rod 180. In an exemplary embodiment, movement of the cutter collar 334 evenly translates the knife rod 180 and the knife blade 370 along axis “A-A.” Further, movement of the slide trigger 321 substantially correlates to the resulting motion of the knife blade 370, i.e., moving the slide trigger 321 one inch distally would move the knife blade 370 one inch in the same direction. It is envisioned that various other ratios may be employed to accomplish the same effect. For example, moving the slide trigger 321 one inch distally may move the knife blade 370 one-half of one inch distally.


As best seen in FIGS. 2 and 3, once assembled, a spring 375 is poised for compression atop a drive housing 358 upon actuation of the handle assembly 430, including handles 440 and 450. More particularly, movement of the handles 440 and 450 reciprocates the drive housing 358 and forces the flange 352 to reciprocate an internally disposed drive rod (not shown) which, in turn, moves jaw members 110 and 120 (see FIG. 5) of the end effector assembly 100 relative to one another. Commonly-owned U.S. patent application Ser. Nos. 10/460,926 and 10/116,944 disclose various conceivable drive mechanisms for reciprocating the drive rod and are both hereby incorporated by reference herein in their entirety.


The slide-activated cutting assembly 320 of the present disclosure is an in-line, linearly reciprocating type of knife assembly 340. By way of comparison, commonly-owned U.S. patent application Ser. No. 10/460,926 entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS,” shows and describes a trigger assembly with a rotating knife activation, as shown in FIGS. 6 and 7 and further described below.


The present disclosure also allows the operator to pull the slide trigger 321 proximally, which similarly moves the knife blade 370 in a proximal direction. FIGS. 4A and 4B show two envisioned versions of the slide triggers 321a, 321b, respectively. The slide trigger 321a, depicted in FIG. 4A, is dimensioned and configured to allow pushing and pulling (i.e., moving distally and proximally) of the knife rod 180 and the knife blade 370 without the need for the user to change the position of his finger(s) when switching directions. FIG. 4B shows an alternate embodiment of the slide trigger 321b, which is similarly dimensioned and configured to allow pushing and pulling of the knife rod 180 and the knife blade 370. The slide triggers 321a and/or 321b may contain an ergonomically-enhanced gripping element 326 which facilitates gripping of the slide trigger 321a and 321b during activation.


Upon actuation of the slide-activated cutting assembly 320, the knife assembly 340 progressively and selectively divides the tissue along an ideal tissue plane in a precise manner to effectively and reliably divide the tissue into two sealed halves with a tissue gap therebetween. The knife assembly 340 allows the user to quickly separate the tissue after sealing without substituting a cutting instrument through a cannula or trocar port.


It is envisioned that the knife blade 370 may be coupled to the same or an alternative electrosurgical energy source to facilitate separation of the tissue along the tissue seal. Moreover, it is envisioned that the angle of the knife blade 370 may be dimensioned to provide more or less aggressive cutting angles depending upon a particular purpose. For example, the knife blade 370 may be positioned at an angle which reduces “tissue wisps” associated with cutting. Moreover, the knife blade 370 may be designed having different blade geometries such as serrated, notched, perforated, hollow, concave, convex etc., depending upon a particular purpose or to achieve a particular result.


Once the tissue is divided into tissue halves, the jaw members 110 and 120 may be opened by re-grasping the handles 440 and 450. Re-initiation or re-grasping of the handles 440 and 450 reduces the grasping/gripping pressure which, in turn, returns the jaw members 110 and 120 to the open, pre-activated position.



FIGS. 6 and 7 illustrate a prior art embodiment of an endoscopic bipolar forceps shown and described in U.S. patent application Ser. No. 10/460,926, the entire contents of which are hereby incorporated by reference herein. The forceps 10 is shown for use with various surgical procedures and generally includes a housing 20, a handle assembly 30, a rotation assembly 80, a rotating trigger assembly 70 and an end effector assembly 100 which mutually cooperate to grasp, seal and divide tubular vessels and vascular tissue. The forceps 10 also includes a shaft 12 which has a distal end 16 dimensioned to mechanically engage the end effector assembly 100 and a proximal end 14 which mechanically engages the housing 20. The proximal end 14 of shaft 12 is received within the housing 20.


As shown in FIG. 1, the forceps 300 may also include an electrosurgical cable 610 which connects the forceps 300 to a source of electrosurgical energy, e.g., a generator (not shown). Generators such as those sold by Valleylab—a division of Tyco Healthcare LP, located in Boulder Colorado may be used as a source of electrosurgical energy, e.g., FORCE EZ™ Electrosurgical Generator, FORCE FX™ Electrosurgical Generator, FORCE 1C™, FORCE2™ Generator, SurgiStat™ II. One such system is described in commonly-owned U.S. Pat. No. 6,033,399 entitled “ELECTROSURGICAL GENERATOR WITH ADAPTIVE POWER CONTROL,” the entire contents of which are hereby incorporated by reference herein. Other systems have been described in commonly-owned U.S. Pat. No. 6,187,003 entitled “BIPOLAR ELECTROSURGICAL INSTRUMENT FOR SEALING VESSELS,” the entire contents of which are also incorporated by reference herein. Further details of the electrosurgical cable 610 are illustrated in Prior Art FIG. 7 and are discussed in commonly-owned U.S. patent application Ser. No. 10/460,926 and are hereby incorporated by reference herein.


The generator may include various safety and performance features including isolated output and independent activation of accessories. The electrosurgical generator may include Valleylab's Instant Response™ technology features which provide an advanced feedback system to sense changes in tissue 200 times per second and adjust voltage and current to maintain appropriate power. The Instant Response™ technology is believed to provide one or more of the following benefits to surgical procedure:

    • Consistent clinical effect through all tissue types;
    • Reduced thermal spread and risk of collateral tissue damage;
    • Less need to “turn up the generator”; and
    • Designed for the minimally invasive environment.


Internal components of the forceps 300 are similar to the internal components illustrated in Prior Art FIG. 7 and described in commonly-owned U.S. patent application Ser. No. 10/460,926 and are hereby incorporated by reference herein. For example, FIG. 6 illustrates the cable 610 internally divided into cable leads 610a, 610b and 610c which each transmit electrosurgical energy through their respective feed paths through the forceps 10 to the end effector assembly 100. Additionally, the handle 40 may include a pair of upper flanges 45 which cooperate with the handle 40 to actuate the drive assembly 150. More particularly, the upper flange 45 may also include a force-actuating flange or drive flange, which abuts the drive assembly 150 such that pivotal movement of the handle 40 forces the actuating flange against the drive assembly 150 which, in turn, closes the jaw members 110 and 120.


As best shown in FIGS. 5 and 7, the end effector assembly 100 which is envisioned to be commonly associated with both the prior art forceps 10 as well as the presently envisioned forceps 300, includes opposing jaw members 110 and 120 which cooperate to effectively grasp tissue (not shown) for sealing purposes. The end effector assembly 100 may be designed as a unilateral assembly, i.e., jaw member 120 is fixed relative to the shaft 12 and jaw member 110 pivots about a pivot pin 103 to grasp tissue or a bilateral assembly where both jaw members 110, 120 move relative to one another. Jaw member 110 includes an outer insulative housing 114 which secures a tissue contacting surface 112. Likewise, jaw member 120 includes an outer insulative housing 124 which secures a tissue contacting surface 122 in opposing relation to surface 112. As such, surfaces 112 and 122 grasp tissue therebetween when the jaw members 110 and 120 are actuated.


It is envisioned that the housing 312, the rotation assembly 80, slide-activated cutting assembly 320, the movable handle 440, the fixed handle 450, and their respective inter-cooperating component parts along with the shaft 314 and the end effector assembly 100 are all assembled during the manufacturing process to form a partially and/or fully disposable forceps 300. For example, the shaft 314 and/or the end effector assembly 100 may be disposable and, therefore, selectively/releasably engagable with the housing 312 and the rotation assembly 80 to form a partially disposable forceps 300 and/or the entire forceps 300 may be disposable after use.


As illustrated in FIG. 8, the slide-activated cutting assembly 320 may be disposed on an in-line surgical forceps 300b.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope of the disclosure.

Claims
  • 1. An endoscopic bipolar forceps, comprising: a housing;a shaft affixed to the housing comprising an end effector assembly comprising two jaw members at a distal end thereof, the shaft defining a longitudinal axis;a drive assembly configured to move at least a portion of the end effector assembly;a handle assembly comprising a movable handle adapted to force a drive flange of the movable handle into mechanical cooperation with the drive assembly to move at least a portion of the end effector assembly; anda slide-activated cutting assembly disposed at least partially within the housing adapted to move a knife rod comprising a knife blade at a distal end thereof to cut tissue along a tissue seal, the slide-activated cutting assembly further including: a slide trigger configured to be pushed distally to move the knife rod distally;a knife slide adapted to facilitate translation of the knife rod, a proximal portion of the knife slide being in mechanical engagement with the slide trigger and a distal portion of the knife slide being in mechanical engagement with the knife rod;a collar clamp operatively connected to the knife slide adapted to maintain alignment of the knife slide during translation of the knife rod; andwherein a source of electrosurgical energy is adapted to connect to each jaw member such that the jaw members are capable of conducting energy through tissue held therebetween to effect a tissue seal.
  • 2. The endoscopic bipolar forceps according to claim 1, wherein the slide trigger is configured to be pulled proximally to move the knife rod proximally.
  • 3. The endoscopic bipolar forceps according to claim 1, wherein the slide trigger comprises a generally arcuate-shaped finger rest.
  • 4. The endoscopic bipolar forceps according to claim 1, wherein the slide-activated cutting assembly further comprises a spring in mechanical engagement with the knife slide which biases the knife slide in a proximal position.
  • 5. The endoscopic bipolar forceps according to claim 1, further comprising a rotating assembly adapted to rotate the jaw members about the longitudinal axis defined by the shaft.
  • 6. The endoscopic bipolar forceps according to claim 1, further comprising a switch disposed within the housing and in electromechanical cooperation with a source of electrosurgical energy, the switch allowing a user to selectively supply bipolar energy to the jaw members to effect the tissue seal.
  • 7. The endoscopic bipolar forceps according to claim 1, wherein the drive assembly comprises a reciprocating sleeve that is adapted to, upon activation of the movable handle, translate one of the jaw members relative to the other jaw member.
  • 8. The endoscopic bipolar forceps according to claim 1, wherein the slide assembly comprises at least one spring adapted to bias the knife rod proximally.
  • 9. The endoscopic bipolar forceps according to claim 1, wherein the forceps is further defined by being in-line.
  • 10. A slide-activated cutting assembly for use with a surgical instrument, comprising: a slide trigger comprising a flange; anda knife assembly comprising a knife slide, a cutter collar, a knife rod and a collar clamp, the knife slide comprising a proximal portion in mechanical cooperation with the flange of the slide trigger and a distal portion, the cutter collar being operatively connected with the distal portion of the knife slide, the knife rod extending distally from the cutter collar, the collar clamp which maintains alignment of the knife assembly during translation of the knife rod and being positioned adjacent the cutter collar,wherein the slide trigger and the knife assembly mutually cooperate to translate the knife rod upon translation of the slide trigger.
  • 11. The slide-activated cutting assembly according to claim 10, wherein the slide trigger comprises a generally arcuate finger rest.
  • 12. The slide-activated cutting assembly according to claim 10, further comprising a knife blade supported on the knife rod.
  • 13. The slide-activated cutting assembly according to claim 10, further comprising a spring adapted to bias the knife assembly proximally.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 60/616,442, filed on Oct. 6, 2004, the contents of which are hereby incorporated by reference in their entirety.

US Referenced Citations (505)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2176479 Willis Oct 1939 A
2305156 Grubel Dec 1942 A
2632661 Cristofv Mar 1953 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
3459187 Pallotta Aug 1969 A
3643663 Sutter Feb 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4088134 Mazzariello May 1978 A
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4233734 Bies Nov 1980 A
4300564 Furihata Nov 1981 A
D263020 Rau, III Feb 1982 S
4370980 Lottick Feb 1983 A
4416276 Newton et al. Nov 1983 A
4452246 Bader et al. Jun 1984 A
4492231 Auth Jan 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4685459 Xoch et al. Aug 1987 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4763669 Jaeger Aug 1988 A
4827929 Hodge May 1989 A
4887612 Esser et al. Dec 1989 A
4938761 Ensslin Jul 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5026370 Lottick Jun 1991 A
5084057 Green et al. Jan 1992 A
5099840 Goble et al. Mar 1992 A
5116332 Lottick May 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Xamiyama et al. Sep 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5282799 Rydell Feb 1994 A
5290286 Parins Mar 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308357 Lichtman May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
5330471 Eggers Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5368600 Failla et al. Nov 1994 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5451224 Goble et al. Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472443 Cordis et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480409 Riza Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5558672 Edwards et al. Sep 1996 A
5562699 Heimberger et al. Oct 1996 A
5569241 Edwardds Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5578052 Koros et al. Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5601601 Tal et al. Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5611798 Eggers Mar 1997 A
5620453 Nallakrishnan Apr 1997 A
5626578 Tihon May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5658281 Heard Aug 1997 A
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5674220 Fox et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5693051 Schulze et al. Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5716366 Yates Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5727428 LeMaire, III et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5755717 Yates et al. May 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5792137 Carr et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5800449 Wales Sep 1998 A
5807393 Williamsom, IV et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5820630 Lind Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5833690 Yates et al. Nov 1998 A
5843080 Fleenor et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5860976 Billings et al. Jan 1999 A
5876401 Schulze et al. Mar 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5935126 Riza Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5976132 Morris Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka et al. Jan 2000 A
6024741 Williamson et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059782 Novak et al. May 2000 A
RE36795 Rydell Jul 2000 E
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6152923 Ryan Nov 2000 A
6162220 Nezhat Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6217602 Redmon Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6322561 Eggers et al. Nov 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6387094 Eitenmuller May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6511480 Tetzlaff et al. Jan 2003 B1
6527771 Weadock et al. Mar 2003 B1
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6620161 Schulze et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6641595 Moran et al. Nov 2003 B1
6652521 Schulze Nov 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6669696 Bacher et al. Dec 2003 B2
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6757977 Dambal et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773434 Ciarrocca Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6790217 Schulze et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6802843 Truckai et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6887240 Lands et al. May 2005 B1
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6942662 Goble et al. Sep 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6994707 Ellman et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7033354 Keppel Apr 2006 B2
7052496 Yamauchi May 2006 B2
D525361 Hushka Jul 2006 S
7083618 Couture et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
D533942 Kerr et al. Dec 2006 S
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179258 Buysse et al. Feb 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7207990 Lands et al. Apr 2007 B2
D541938 Kerr et al. May 2007 S
7223265 Keppel May 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7241296 Buysse et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
20020013583 Camran et al. Jan 2002 A1
20020049442 Roberts et al. Apr 2002 A1
20020099372 Schulze et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020188294 Couture et al. Dec 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018331 Dycus et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030032956 Lands et al. Feb 2003 A1
20030040745 Frazier et al. Feb 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030078578 Truckai et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030158549 Swanson Aug 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030199869 Johnson et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220637 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040049185 Latterell et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040115296 Duffin Jun 2004 A1
20040116924 Dycus et al. Jun 2004 A1
20040116979 Truckai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147925 Buysse et al. Jul 2004 A1
20040158269 Holman Aug 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040176762 Lawes et al. Sep 2004 A1
20040193153 Sarter et al. Sep 2004 A1
20040225288 Buysse et al. Nov 2004 A1
20040230189 Keppel Nov 2004 A1
20040236325 Tetzlaff et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040249371 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040250419 Sremcich et al. Dec 2004 A1
20040254573 Dycus et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004568 Lawes et al. Jan 2005 A1
20050004570 Chapman et al. Jan 2005 A1
20050021025 Buysse et al. Jan 2005 A1
20050021026 Baily Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050107784 Moses et al. May 2005 A1
20050107785 Dycus et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050113827 Dumbauld et al. May 2005 A1
20050113828 Shields et al. May 2005 A1
20050119655 Moses et al. Jun 2005 A1
20050149151 Orszulak et al. Jul 2005 A1
20060064085 Schechter et al. Mar 2006 A1
20060079891 Arts et al. Apr 2006 A1
20060129146 Dycus et al. Jun 2006 A1
20060161150 Keppel Jul 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060167452 Moses et al. Jul 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060189980 Johnson et al. Aug 2006 A1
20060189981 Dycus et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217709 Couture et al. Sep 2006 A1
20060224158 Odom et al. Oct 2006 A1
20060259036 Tetzlaf et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060271038 Johnson et al. Nov 2006 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070055231 Dycus et al. Mar 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070074807 Guerra Apr 2007 A1
20070078456 Dumbauld et al. Apr 2007 A1
20070078458 Dumbauld et al. Apr 2007 A1
20070078459 Johnson et al. Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070106297 Dumbauld et al. May 2007 A1
20070118111 Weinberg May 2007 A1
20070118115 Artale et al. May 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070156139 Schechter et al. Jul 2007 A1
20070156140 Baily Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070203485 Keppel Aug 2007 A1
20070213706 Dumbauld et al. Sep 2007 A1
20070213707 Dumbauld et al. Sep 2007 A1
20070213708 Dumbauld et al. Sep 2007 A1
20070213712 Buysse et al. Sep 2007 A1
Foreign Referenced Citations (74)
Number Date Country
2415263 Oct 1975 DE
2627679 Jan 1977 DE
8712328 Mar 1988 DE
4303882 Aug 1994 DE
29616210 Jan 1997 DE
19751106 May 1998 DE
0364216 Apr 1990 EP
518230 Dec 1992 EP
0 541 930 May 1993 EP
0572131 Dec 1993 EP
584787 Mar 1994 EP
0589453 Mar 1994 EP
0623316 Nov 1994 EP
0624348 Nov 1994 EP
0650701 May 1995 EP
0694290 Mar 1996 EP
0717966 Jun 1996 EP
0754437 Mar 1997 EP
853922 Jul 1998 EP
0875209 Nov 1998 EP
0878169 Nov 1998 EP
0887046 Jan 1999 EP
0923907 Jun 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
1025807 Oct 2000 EP
1034746 Oct 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1159926 Dec 2001 EP
1301135 Apr 2003 EP
1330991 Jul 2003 EP
1486177 Jun 2004 EP
1472984 Nov 2004 EP
1530952 May 2005 EP
1532932 May 2005 EP
1632192 Mar 2006 EP
1645238 Apr 2006 EP
1707143 Oct 2006 EP
2213416 Aug 1989 GB
WO8900757 Jan 1989 WO
WO9420025 Sep 1994 WO
WO9507662 Mar 1995 WO
WO9515124 Jun 1995 WO
WO9605776 Feb 1996 WO
WO 9622056 Jul 1996 WO
WO9710764 Mar 1997 WO
WO 9940861 Aug 1999 WO
WO 9966850 Dec 1999 WO
WO0024331 May 2000 WO
WO0047124 Aug 2000 WO
WO0207627 Jan 2002 WO
WO02080783 Oct 2002 WO
WO02080784 Oct 2002 WO
WO02080785 Oct 2002 WO
WO02080786 Oct 2002 WO
WO02080793 Oct 2002 WO
WO02080794 Oct 2002 WO
WO 02080796 Oct 2002 WO
WO02080797 Oct 2002 WO
WO02081170 Oct 2002 WO
WO 03101311 Dec 2003 WO
WO2004032777 Apr 2004 WO
WO2004073490 Sep 2004 WO
WO2004073753 Sep 2004 WO
WO 2004082495 Sep 2004 WO
WO2005004735 Jan 2005 WO
WO 2005110264 Nov 2005 WO
Related Publications (1)
Number Date Country
20060074416 A1 Apr 2006 US
Provisional Applications (1)
Number Date Country
60616442 Oct 2004 US