The present disclosure relates to an electrosurgical forceps and more particularly, the present disclosure relates to an endoscopic bipolar electrosurgical forceps for sealing and/or cutting tissue.
Electrosurgical forceps utilize both mechanical clamping action and electrosurgical energy to affect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopes and endoscopic instruments for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.
Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from three millimeters to 12 millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.
Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue.
It is thought that the process of coagulating vessels is fundamentally different than electrosurgical vessel sealing. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and/or dried. “Vessel sealing” or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass. Coagulation of small vessels is sufficient to permanently close them, while larger vessels need to be sealed to assure permanent closure.
In order to effectively seal larger vessels (or tissue) two predominant mechanical parameters should be accurately controlled—the pressure applied to the vessel (tissue) and the gap distance between the electrodes—both of which are affected by the thickness of the sealed vessel. More particularly, accurate application of pressure is important to oppose the walls of the vessel; to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal. It has been determined that a typical fused vessel wall is optimum between about 0.001 inches and about 0.006 inches. Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.
With respect to smaller vessels, the pressure applied to the tissue tends to become less relevant whereas the gap distance between the electrically conductive surfaces becomes more significant for effective sealing. In other words, the chances of the two electrically conductive surfaces touching during activation increases as vessels become smaller.
Many known instruments include blade members or shearing members which simply cut tissue in a mechanical and/or electromechanical manner and are relatively ineffective for vessel sealing purposes. Other instruments rely on clamping pressure alone to procure proper sealing thickness and are not designed to take into account gap tolerances and/or parallelism and flatness requirements which are parameters which, if properly controlled, can assure a consistent and effective tissue seal. For example, it is known that it is difficult to adequately control thickness of the resulting sealed tissue by controlling clamping pressure alone for either of two reasons: 1) if too much force is applied, there is a possibility that the two poles will touch and energy will not be transferred through the tissue resulting in an ineffective seal; or 2) if too low a force is applied the tissue may pre-maturely move prior to activation and sealing and/or a thicker, less reliable seal may be created.
It has been found that the pressure range for assuring a consistent and effective seal is between about 3 kg/cm2 to about 16 kg/cm2 and, preferably, within a working range of about 7 kg/cm2 to about 13 kg/cm2. Manufacturing an instrument which is capable of providing a closure pressure within this working range has been shown to be effective for sealing arteries, tissues and other vascular bundles.
Various force-actuating assemblies have been developed in the past for providing the appropriate closure forces to affect vessel sealing. For example, one such actuating assembly has been developed by Valleylab Inc., a division of Tyco Healthcare LP, for use with Valleylab's vessel sealing and dividing instrument commonly sold under the trademark LIGASURE ATLAS®. This assembly includes a four-bar mechanical linkage, a spring and a drive assembly which cooperate to consistently provide and maintain tissue pressures within the above working ranges. The LIGASURE ATLAS® is presently designed to fit through a 10 mm cannula and includes a bi-lateral jaw closure mechanism which is activated by a foot switch. A trigger assembly extends a knife distally to separate the tissue along the tissue seal. A rotating mechanism is associated with a distal end of the handle to allow a surgeon to selectively rotate the jaw members to facilitate grasping tissue. Co-pending U.S. application Ser. Nos. 10/179,863 and 10/116,944 and PCT Application Ser. Nos. PCT/US01/01890 and PCT/US01/11340 describe in detail the operating features of the LIGASURE ATLAS® and various methods relating thereto. The contents of all of these applications are hereby incorporated by reference herein.
Certain surgical procedures necessitate the use of pistol-like forceps, while other procedures necessitate an in-line forceps to facilitate manipulation of vessels. For the in-line version, it would be difficult to use a conventional trigger or rotary knife actuation assembly to cut tissue.
It would be desirous to develop an endoscopic vessel sealing instrument which can be utilized for a variety of surgical procedures which may require both vessel sealing and subsequent division of tissue along the tissue seal. The instrument may include a simpler and more mechanically advantageous drive assembly to facilitate grasping and manipulating vessels and tissue. In addition and particularly with respect to in-line vessel sealing instruments, it may be desirous to manufacture an instrument which includes a sliding activation trigger to advance the cutting mechanism.
According to an aspect of the present disclosure, an endoscopic bipolar forceps is provided. The forceps comprise a housing, a shaft, a drive assembly, a handle assembly and a slide-activated cutting assembly. The shaft defines a longitudinal axis, is affixed to the housing and comprises an end effector assembly at its distal end. The end effector assembly comprises two jaw members. The drive assembly is configured to move at least a portion of the end effector assembly. The handle assembly comprises a movable handle which forces a drive flange into mechanical cooperation with the drive assembly to move at least a portion of the end effector assembly. The slide-activated cutting assembly is disposed at least partially within the housing. The slide-activated cutting assembly moves a knife rod, which comprises a knife blade at its distal end, to cut tissue along a tissue seal. A source of electrosurgical energy is adapted to connect to each jaw member such that the jaw members are capable of conducting energy through tissue which is held therebetween. The electrosurgical energy is administered to seal the tissue.
In an exemplary embodiment, the slide-activated cutting assembly comprises a slide trigger configured to be pushed distally to move the knife rod distally. Further, the slide trigger may be pulled proximally to move the knife rod proximally.
It is envisioned for the slide trigger to include a generally arcuate-shaped finger rest.
It is contemplated for the slide-activated cutting assembly to comprise a knife slide which facilitates translation of the knife rod. A proximal portion of the knife slide is in mechanical engagement with the slide trigger. A distal portion of the knife slide is in mechanical engagement with the knife rod.
In an embodiment of the disclosure, the slide-activated cutting assembly further comprises a collar clamp operatively connected to the knife slide. The collar clamp helps maintain alignment of the knife slide during translation of the knife rod.
In an exemplary embodiment, the slide-activated cutting assembly includes a spring in mechanical engagement with the knife slide. The spring biases the knife slide in a proximal-most position.
It is envisioned that an amount of translation of the slide trigger substantially correlates to a resulting amount of translation of the knife rod. It is also envisioned that the amount of translation of the slide trigger indirectly correlates to a resulting amount of translation of the knife rod.
It is contemplated for the forceps to include a rotating assembly. In an exemplary embodiment, the rotating assembly rotates the jaw members about the longitudinal axis defined by the shaft.
In an embodiment of the disclosure, the forceps includes a switch disposed within the housing and in electromechanical cooperation with the source of electrosurgical energy. The switch allows a user to selectively supply bipolar energy to the jaw members to affect a tissue seal.
In an exemplary embodiment, the drive assembly comprises a reciprocating sleeve. Upon activation of the movable handle, the reciprocating sleeve translates to move a jaw member relative to the other jaw member. It is envisioned for the drive assembly to include at least one spring which biases the knife rod proximally.
A slide-activated cutting assembly for use with a surgical instrument is also disclosed. The slide-activated cutting assembly comprises a slide trigger and a knife assembly. The slide trigger comprises a flange. The knife assembly comprises a knife slide, a cutter collar, a knife rod and a collar clamp. The knife slide comprises a proximal portion which is in mechanical cooperation with the flange of the slide trigger and also comprises distal portion. The cutter collar is operatively connected with the distal portion of the knife slide. The knife rod extends distally from the cutter collar. The collar clamp maintains alignment of the knife assembly during translation of the knife rod and is positioned adjacent the cutter collar. The slide trigger and the knife assembly mutually cooperate to translate the knife rod upon translation of the slide trigger.
Various embodiments of the subject instrument are described herein with reference to the drawings wherein:
Embodiments of the presently disclosed slide-activated cutting assembly will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein and as is traditional, the term “distal” refers to that portion which is farthest from the user while the term “proximal” refers to that portion which is closest to the user.
Referring initially to
Although the majority of the figure drawings depict the slide-activated cutting assembly 320 for use in connection with endoscopic surgical procedures, the present disclosure may be used for more traditional open surgical procedures. For the purposes herein, the slide-activated cutting assembly 320 is described in terms of an endoscopic instrument, however, it is contemplated that an open version of the slide-activated cutting assembly 320 may also include the same or similar operating components and features as described below.
Referring to
With continued reference to
As best seen in
It is envisioned that the switch 200 permits the user to selectively activate electrosurgical energy in a variety of different orientations, i.e., multi-oriented activation. As can be appreciated, this simplifies activation. Further details of the switch 200 are discussed in commonly-owned U.S. patent application Ser. No. 10/460,926 and are hereby incorporated by reference herein.
When the jaw members 110 and 120 are fully compressed about tissue, the forceps 300 is ready for selective application of electrosurgical energy and subsequent separation of the tissue. More particularly, as energy is being selectively transferred to the end effector assembly 100, across the jaw members 110 and 120 and through the tissue, a tissue seal forms isolating two tissue halves. At this point with other known vessel sealing instruments, the user removes and replaces the forceps 300 with a cutting instrument (not shown) to divide the tissue halves along the tissue seal. As can be appreciated, this is both time consuming and tedious.
As best seen in
The knife assembly 340 comprises a knife slide 330, a cutter collar 334 and a collar clamp 350. A distal portion 332 of the knife slide 330 is operatively connected to the cutter collar 334 of the knife assembly 340. The collar clamp 350 is abuttingly positioned against or adjacent the cutter collar 334 and is designed to maintain alignment of the knife assembly 340 during translation of a knife rod 180.
With continued reference to
With continued reference to
As best seen in
The slide-activated cutting assembly 320 of the present disclosure is an in-line, linearly reciprocating type of knife assembly 340. By way of comparison, commonly-owned U.S. patent application Ser. No. 10/460,926 entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS,” shows and describes a trigger assembly with a rotating knife activation, as shown in
The present disclosure also allows the operator to pull the slide trigger 321 proximally, which similarly moves the knife blade 370 in a proximal direction.
Upon actuation of the slide-activated cutting assembly 320, the knife assembly 340 progressively and selectively divides the tissue along an ideal tissue plane in a precise manner to effectively and reliably divide the tissue into two sealed halves with a tissue gap therebetween. The knife assembly 340 allows the user to quickly separate the tissue after sealing without substituting a cutting instrument through a cannula or trocar port.
It is envisioned that the knife blade 370 may be coupled to the same or an alternative electrosurgical energy source to facilitate separation of the tissue along the tissue seal. Moreover, it is envisioned that the angle of the knife blade 370 may be dimensioned to provide more or less aggressive cutting angles depending upon a particular purpose. For example, the knife blade 370 may be positioned at an angle which reduces “tissue wisps” associated with cutting. Moreover, the knife blade 370 may be designed having different blade geometries such as serrated, notched, perforated, hollow, concave, convex etc., depending upon a particular purpose or to achieve a particular result.
Once the tissue is divided into tissue halves, the jaw members 110 and 120 may be opened by re-grasping the handles 440 and 450. Re-initiation or re-grasping of the handles 440 and 450 reduces the grasping/gripping pressure which, in turn, returns the jaw members 110 and 120 to the open, pre-activated position.
As shown in
The generator may include various safety and performance features including isolated output and independent activation of accessories. The electrosurgical generator may include Valleylab's Instant Response™ technology features which provide an advanced feedback system to sense changes in tissue 200 times per second and adjust voltage and current to maintain appropriate power. The Instant Response™ technology is believed to provide one or more of the following benefits to surgical procedure:
Internal components of the forceps 300 are similar to the internal components illustrated in Prior Art
As best shown in
It is envisioned that the housing 312, the rotation assembly 80, slide-activated cutting assembly 320, the movable handle 440, the fixed handle 450, and their respective inter-cooperating component parts along with the shaft 314 and the end effector assembly 100 are all assembled during the manufacturing process to form a partially and/or fully disposable forceps 300. For example, the shaft 314 and/or the end effector assembly 100 may be disposable and, therefore, selectively/releasably engagable with the housing 312 and the rotation assembly 80 to form a partially disposable forceps 300 and/or the entire forceps 300 may be disposable after use.
As illustrated in
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope of the disclosure.
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/616,442, filed on Oct. 6, 2004, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
371664 | Brannan et al. | Oct 1887 | A |
702472 | Pignolet | Jun 1902 | A |
728883 | Downes | May 1903 | A |
1586645 | Bierman | Jun 1926 | A |
2002594 | Wappler et al. | May 1935 | A |
2011169 | Wappler | Aug 1935 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2176479 | Willis | Oct 1939 | A |
2305156 | Grubel | Dec 1942 | A |
2632661 | Cristofv | Mar 1953 | A |
2668538 | Baker | Feb 1954 | A |
2796065 | Kapp | Jun 1957 | A |
3459187 | Pallotta | Aug 1969 | A |
3643663 | Sutter | Feb 1972 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3862630 | Balamuth | Jan 1975 | A |
3863339 | Reaney et al. | Feb 1975 | A |
3866610 | Kletschka | Feb 1975 | A |
3911766 | Fridolph et al. | Oct 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3921641 | Hulka | Nov 1975 | A |
3938527 | Rioux et al. | Feb 1976 | A |
3952749 | Fridolph et al. | Apr 1976 | A |
3970088 | Morrison | Jul 1976 | A |
3987795 | Morrison | Oct 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4041952 | Morrison, Jr. et al. | Aug 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4088134 | Mazzariello | May 1978 | A |
4112950 | Pike | Sep 1978 | A |
4127222 | Adams | Nov 1978 | A |
4128099 | Bauer | Dec 1978 | A |
4165746 | Burgin | Aug 1979 | A |
4233734 | Bies | Nov 1980 | A |
4300564 | Furihata | Nov 1981 | A |
D263020 | Rau, III | Feb 1982 | S |
4370980 | Lottick | Feb 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4452246 | Bader et al. | Jun 1984 | A |
4492231 | Auth | Jan 1985 | A |
4552143 | Lottick | Nov 1985 | A |
4574804 | Kurwa | Mar 1986 | A |
4597379 | Kihn et al. | Jul 1986 | A |
4600007 | Lahodny et al. | Jul 1986 | A |
4655216 | Tischer | Apr 1987 | A |
4657016 | Garito et al. | Apr 1987 | A |
4662372 | Sharkany et al. | May 1987 | A |
4671274 | Sorochenko | Jun 1987 | A |
4685459 | Xoch et al. | Aug 1987 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4763669 | Jaeger | Aug 1988 | A |
4827929 | Hodge | May 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4938761 | Ensslin | Jul 1990 | A |
4985030 | Melzer et al. | Jan 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5084057 | Green et al. | Jan 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5116332 | Lottick | May 1992 | A |
5147357 | Rose et al. | Sep 1992 | A |
5151102 | Xamiyama et al. | Sep 1992 | A |
5176695 | Dulebohn | Jan 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196009 | Kirwan, Jr. | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5215101 | Jacobs et al. | Jun 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217458 | Parins | Jun 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5219354 | Choudhury et al. | Jun 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5250063 | Abidin et al. | Oct 1993 | A |
5258001 | Corman | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261918 | Phillips et al. | Nov 1993 | A |
5275615 | Rose | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308357 | Lichtman | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5324289 | Eggers | Jun 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334215 | Chen | Aug 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5344424 | Roberts et al. | Sep 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354271 | Voda | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5366477 | LeMarie, III et al. | Nov 1994 | A |
5368600 | Failla et al. | Nov 1994 | A |
5383897 | Wholey | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5391183 | Janzen et al. | Feb 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5411519 | Tovey et al. | May 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5415657 | Taymor-Luria | May 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5425739 | Jessen | Jun 1995 | A |
5429616 | Schaffer | Jul 1995 | A |
5431672 | Cote et al. | Jul 1995 | A |
5431674 | Basile et al. | Jul 1995 | A |
5437292 | Kipshidze et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5441517 | Kensey et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443464 | Russell et al. | Aug 1995 | A |
5443480 | Jacobs et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445658 | Durrfeld et al. | Aug 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5496347 | Hashiguchi et al. | Mar 1996 | A |
5499997 | Sharpe et al. | Mar 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5540715 | Katsaros et al. | Jul 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5562699 | Heimberger et al. | Oct 1996 | A |
5569241 | Edwardds | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5585896 | Yamazaki et al. | Dec 1996 | A |
5590570 | LeMaire, III et al. | Jan 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5611798 | Eggers | Mar 1997 | A |
5620453 | Nallakrishnan | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695522 | LeMaire, III et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5727428 | LeMaire, III et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5766130 | Selmonosky | Jun 1998 | A |
5766166 | Hooven | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5772655 | Bauer et al. | Jun 1998 | A |
5772670 | Brosa | Jun 1998 | A |
5776128 | Eggers | Jul 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5792137 | Carr et al. | Aug 1998 | A |
5792177 | Kaseda | Aug 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797938 | Paraschac et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5800449 | Wales | Sep 1998 | A |
5807393 | Williamsom, IV et al. | Sep 1998 | A |
5810808 | Eggers | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5814043 | Shapeton | Sep 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5820630 | Lind | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827279 | Hughett et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5843080 | Fleenor et al. | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5860976 | Billings et al. | Jan 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5891141 | Rydell | Apr 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893863 | Yoon | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5893877 | Gampp, Jr. et al. | Apr 1999 | A |
5902301 | Olig | May 1999 | A |
5906630 | Anderhub et al. | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5908432 | Pan | Jun 1999 | A |
5911719 | Eggers | Jun 1999 | A |
5913874 | Berns et al. | Jun 1999 | A |
5921984 | Sutcu et al. | Jul 1999 | A |
5925043 | Kumar et al. | Jul 1999 | A |
5935126 | Riza | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5957923 | Hahnen et al. | Sep 1999 | A |
5960544 | Beyers | Oct 1999 | A |
5961514 | Long et al. | Oct 1999 | A |
5976132 | Morris | Nov 1999 | A |
5984939 | Yoon | Nov 1999 | A |
5989277 | LeMaire, III et al. | Nov 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010516 | Hulka et al. | Jan 2000 | A |
6024741 | Williamson et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6030384 | Nezhat | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6041679 | Slater et al. | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053914 | Eggers et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6059782 | Novak et al. | May 2000 | A |
RE36795 | Rydell | Jul 2000 | E |
6083223 | Baker | Jul 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126658 | Baker | Oct 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6179834 | Buysse et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183467 | Shapeton et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193718 | Kortenbach et al. | Feb 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6217602 | Redmon | Apr 2001 | B1 |
6221039 | Durgin et al. | Apr 2001 | B1 |
6224593 | Ryan et al. | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6280458 | Boche et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6322561 | Eggers et al. | Nov 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6345532 | Coudray et al. | Feb 2002 | B1 |
6350264 | Hooven | Feb 2002 | B1 |
6352536 | Buysse et al. | Mar 2002 | B1 |
6358249 | Chen et al. | Mar 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6387094 | Eitenmuller | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402747 | Lindemann et al. | Jun 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6425896 | Baltschun et al. | Jul 2002 | B1 |
6440144 | Bacher | Aug 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6464701 | Hooven et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6464704 | Schmaltz et al. | Oct 2002 | B2 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6527771 | Weadock et al. | Mar 2003 | B1 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6626901 | Treat et al. | Sep 2003 | B1 |
6641595 | Moran et al. | Nov 2003 | B1 |
6652521 | Schulze | Nov 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6660072 | Chatterjee | Dec 2003 | B2 |
6669696 | Bacher et al. | Dec 2003 | B2 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6685724 | Haluck | Feb 2004 | B1 |
6695840 | Schulze | Feb 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6726068 | Miller | Apr 2004 | B2 |
6726686 | Buysse et al. | Apr 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6743229 | Buysse et al. | Jun 2004 | B2 |
6757977 | Dambal et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6776780 | Mulier et al. | Aug 2004 | B2 |
6790217 | Schulze et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6802843 | Truckai et al. | Oct 2004 | B2 |
D499181 | Dycus et al. | Nov 2004 | S |
6818000 | Muller et al. | Nov 2004 | B2 |
6887240 | Lands et al. | May 2005 | B1 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6932816 | Phan | Aug 2005 | B2 |
6942662 | Goble et al. | Sep 2005 | B2 |
6960210 | Lands et al. | Nov 2005 | B2 |
6964662 | Kidooka | Nov 2005 | B2 |
6994707 | Ellman et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7033354 | Keppel | Apr 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
7083618 | Couture et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7103947 | Sartor et al. | Sep 2006 | B2 |
7112199 | Cosmescu | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131971 | Dycus et al. | Nov 2006 | B2 |
7135020 | Lawes et al. | Nov 2006 | B2 |
D533942 | Kerr et al. | Dec 2006 | S |
7147638 | Chapman et al. | Dec 2006 | B2 |
7150097 | Sremcich et al. | Dec 2006 | B2 |
7150749 | Dycus et al. | Dec 2006 | B2 |
D535027 | James et al. | Jan 2007 | S |
7156846 | Dycus et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179258 | Buysse et al. | Feb 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7207990 | Lands et al. | Apr 2007 | B2 |
D541938 | Kerr et al. | May 2007 | S |
7223265 | Keppel | May 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7241296 | Buysse et al. | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7255697 | Dycus et al. | Aug 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7270660 | Ryan | Sep 2007 | B2 |
7270664 | Johnson et al. | Sep 2007 | B2 |
20020013583 | Camran et al. | Jan 2002 | A1 |
20020049442 | Roberts et al. | Apr 2002 | A1 |
20020099372 | Schulze et al. | Jul 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020111624 | Witt et al. | Aug 2002 | A1 |
20020188294 | Couture et al. | Dec 2002 | A1 |
20030014052 | Buysse et al. | Jan 2003 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030018331 | Dycus et al. | Jan 2003 | A1 |
20030018332 | Schmaltz et al. | Jan 2003 | A1 |
20030032956 | Lands et al. | Feb 2003 | A1 |
20030040745 | Frazier et al. | Feb 2003 | A1 |
20030069571 | Treat et al. | Apr 2003 | A1 |
20030078578 | Truckai et al. | Apr 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030139742 | Wampler et al. | Jul 2003 | A1 |
20030158549 | Swanson | Aug 2003 | A1 |
20030181910 | Dycus et al. | Sep 2003 | A1 |
20030199869 | Johnson et al. | Oct 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030220637 | Truckai et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20030236325 | Bonora | Dec 2003 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040030332 | Knowlton et al. | Feb 2004 | A1 |
20040049185 | Latterell et al. | Mar 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040082952 | Dycus et al. | Apr 2004 | A1 |
20040087943 | Dycus et al. | May 2004 | A1 |
20040115296 | Duffin | Jun 2004 | A1 |
20040116924 | Dycus et al. | Jun 2004 | A1 |
20040116979 | Truckai et al. | Jun 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040143263 | Schechter et al. | Jul 2004 | A1 |
20040147925 | Buysse et al. | Jul 2004 | A1 |
20040158269 | Holman | Aug 2004 | A1 |
20040162557 | Tetzlaff et al. | Aug 2004 | A1 |
20040176762 | Lawes et al. | Sep 2004 | A1 |
20040193153 | Sarter et al. | Sep 2004 | A1 |
20040225288 | Buysse et al. | Nov 2004 | A1 |
20040230189 | Keppel | Nov 2004 | A1 |
20040236325 | Tetzlaff et al. | Nov 2004 | A1 |
20040243125 | Dycus et al. | Dec 2004 | A1 |
20040249371 | Dycus et al. | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040250419 | Sremcich et al. | Dec 2004 | A1 |
20040254573 | Dycus et al. | Dec 2004 | A1 |
20050004564 | Wham et al. | Jan 2005 | A1 |
20050004568 | Lawes et al. | Jan 2005 | A1 |
20050004570 | Chapman et al. | Jan 2005 | A1 |
20050021025 | Buysse et al. | Jan 2005 | A1 |
20050021026 | Baily | Jan 2005 | A1 |
20050021027 | Shields et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050101951 | Wham et al. | May 2005 | A1 |
20050101952 | Lands et al. | May 2005 | A1 |
20050107784 | Moses et al. | May 2005 | A1 |
20050107785 | Dycus et al. | May 2005 | A1 |
20050113818 | Sartor et al. | May 2005 | A1 |
20050113819 | Wham et al. | May 2005 | A1 |
20050113826 | Johnson et al. | May 2005 | A1 |
20050113827 | Dumbauld et al. | May 2005 | A1 |
20050113828 | Shields et al. | May 2005 | A1 |
20050119655 | Moses et al. | Jun 2005 | A1 |
20050149151 | Orszulak et al. | Jul 2005 | A1 |
20060064085 | Schechter et al. | Mar 2006 | A1 |
20060079891 | Arts et al. | Apr 2006 | A1 |
20060129146 | Dycus et al. | Jun 2006 | A1 |
20060161150 | Keppel | Jul 2006 | A1 |
20060167450 | Johnson et al. | Jul 2006 | A1 |
20060167452 | Moses et al. | Jul 2006 | A1 |
20060173452 | Buysse et al. | Aug 2006 | A1 |
20060189980 | Johnson et al. | Aug 2006 | A1 |
20060189981 | Dycus et al. | Aug 2006 | A1 |
20060190035 | Hushka et al. | Aug 2006 | A1 |
20060217709 | Couture et al. | Sep 2006 | A1 |
20060224158 | Odom et al. | Oct 2006 | A1 |
20060259036 | Tetzlaf et al. | Nov 2006 | A1 |
20060264922 | Sartor et al. | Nov 2006 | A1 |
20060264931 | Chapman et al. | Nov 2006 | A1 |
20060271038 | Johnson et al. | Nov 2006 | A1 |
20070043352 | Garrison et al. | Feb 2007 | A1 |
20070043353 | Dycus et al. | Feb 2007 | A1 |
20070055231 | Dycus et al. | Mar 2007 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070074807 | Guerra | Apr 2007 | A1 |
20070078456 | Dumbauld et al. | Apr 2007 | A1 |
20070078458 | Dumbauld et al. | Apr 2007 | A1 |
20070078459 | Johnson et al. | Apr 2007 | A1 |
20070088356 | Moses et al. | Apr 2007 | A1 |
20070106295 | Garrison et al. | May 2007 | A1 |
20070106297 | Dumbauld et al. | May 2007 | A1 |
20070118111 | Weinberg | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070142833 | Dycus et al. | Jun 2007 | A1 |
20070142834 | Dumbauld | Jun 2007 | A1 |
20070156139 | Schechter et al. | Jul 2007 | A1 |
20070156140 | Baily | Jul 2007 | A1 |
20070173811 | Couture et al. | Jul 2007 | A1 |
20070173814 | Hixson et al. | Jul 2007 | A1 |
20070179499 | Garrison | Aug 2007 | A1 |
20070203485 | Keppel | Aug 2007 | A1 |
20070213706 | Dumbauld et al. | Sep 2007 | A1 |
20070213707 | Dumbauld et al. | Sep 2007 | A1 |
20070213708 | Dumbauld et al. | Sep 2007 | A1 |
20070213712 | Buysse et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
2415263 | Oct 1975 | DE |
2627679 | Jan 1977 | DE |
8712328 | Mar 1988 | DE |
4303882 | Aug 1994 | DE |
29616210 | Jan 1997 | DE |
19751106 | May 1998 | DE |
0364216 | Apr 1990 | EP |
518230 | Dec 1992 | EP |
0 541 930 | May 1993 | EP |
0572131 | Dec 1993 | EP |
584787 | Mar 1994 | EP |
0589453 | Mar 1994 | EP |
0623316 | Nov 1994 | EP |
0624348 | Nov 1994 | EP |
0650701 | May 1995 | EP |
0694290 | Mar 1996 | EP |
0717966 | Jun 1996 | EP |
0754437 | Mar 1997 | EP |
853922 | Jul 1998 | EP |
0875209 | Nov 1998 | EP |
0878169 | Nov 1998 | EP |
0887046 | Jan 1999 | EP |
0923907 | Jun 1999 | EP |
0986990 | Mar 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
1025807 | Oct 2000 | EP |
1034746 | Oct 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1082944 | Mar 2001 | EP |
1159926 | Dec 2001 | EP |
1301135 | Apr 2003 | EP |
1330991 | Jul 2003 | EP |
1486177 | Jun 2004 | EP |
1472984 | Nov 2004 | EP |
1530952 | May 2005 | EP |
1532932 | May 2005 | EP |
1632192 | Mar 2006 | EP |
1645238 | Apr 2006 | EP |
1707143 | Oct 2006 | EP |
2213416 | Aug 1989 | GB |
WO8900757 | Jan 1989 | WO |
WO9420025 | Sep 1994 | WO |
WO9507662 | Mar 1995 | WO |
WO9515124 | Jun 1995 | WO |
WO9605776 | Feb 1996 | WO |
WO 9622056 | Jul 1996 | WO |
WO9710764 | Mar 1997 | WO |
WO 9940861 | Aug 1999 | WO |
WO 9966850 | Dec 1999 | WO |
WO0024331 | May 2000 | WO |
WO0047124 | Aug 2000 | WO |
WO0207627 | Jan 2002 | WO |
WO02080783 | Oct 2002 | WO |
WO02080784 | Oct 2002 | WO |
WO02080785 | Oct 2002 | WO |
WO02080786 | Oct 2002 | WO |
WO02080793 | Oct 2002 | WO |
WO02080794 | Oct 2002 | WO |
WO 02080796 | Oct 2002 | WO |
WO02080797 | Oct 2002 | WO |
WO02081170 | Oct 2002 | WO |
WO 03101311 | Dec 2003 | WO |
WO2004032777 | Apr 2004 | WO |
WO2004073490 | Sep 2004 | WO |
WO2004073753 | Sep 2004 | WO |
WO 2004082495 | Sep 2004 | WO |
WO2005004735 | Jan 2005 | WO |
WO 2005110264 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060074416 A1 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
60616442 | Oct 2004 | US |