Slide bearing

Information

  • Patent Grant
  • 9657769
  • Patent Number
    9,657,769
  • Date Filed
    Wednesday, March 19, 2014
    10 years ago
  • Date Issued
    Tuesday, May 23, 2017
    7 years ago
Abstract
Provided is a slide bearing with which friction-reducing effects are obtained and the total volume of effluent oil is limited. In a slide bearing an end of the narrow groove on a downstream side of the rotation direction is disposed at the position which is adjacent to a mating surface on the downstream side of the rotation direction and not communicated with the mating surface on the downstream side of the rotation direction and an end of the narrow groove on an upstream side of the rotation direction is disposed at the position which is the upstream side from the end on the downstream side of the rotation direction and is rotated by an angle no more than 90 degrees from the mating surface on the downstream side of the rotation direction.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a national phase application based on the PCT International Patent Application No. PCT/JP2014/057594 filed Mar. 19, 2014, claiming priority to Japanese Patent Application No. 2013-058660 filed Mar. 21, 2013, the entire contents of both of which are incorporated herein by reference.


TECHNICAL FIELD

The present invention relates to a slide bearing. In detail, the present invention relates to a slide bearing having vertically disposed halved members which is made by dividing a cylinder in two in a direction parallel to the axial direction.


BACKGROUND ART

Conventionally, a slide bearing for holding a crankshaft of an engine rotatably that has halved structure in which two members divided in two are mated is known. In order to reduce the frictional area of the bearing and to get friction-reducing effect, the width of the bearing is reduced. However, reducing the width of the bearing causes increase of volume of effluent oil. Then, it is publicly known that relief parts (narrow grooves) all over the circumference are configured at the both ends of the bearing in the axial direction (Patent Literature 1).


PRIOR ART REFERENCE
Patent Literature

Patent Literature 1: the Japanese Translation of PCT International Application Publication No. 2003-532036


DISCLOSURE OF INVENTION
Problems to be Solved by the Invention

However, in the conventional bearing in which narrow grooves all over the circumference are configured, reducing a friction area causes decrease of the load carrying capacity and the oil film thickness which is necessary for good lubrication is not able to be kept and also the total volume of effluent oil is much.


In consideration of the above problems, the present invention provides a slide bearing for getting friction-reducing effect and to suppress total volume of effluent oil.


Means for Solving the Problems

Problems to be solved by the invention are described as above and the means for solving the problems is explained.


According to the invention of claim 1, in a slide bearing in which halved members made by dividing a cylinder in two in a direction parallel to the axial direction are disposed vertically, narrow grooves are provided at an end of the lower halved member in the circumferential direction, an end of the narrow groove on a downstream side of the rotation direction is disposed at the position which is adjacent to a mating surface on the downstream side of the rotation direction and not communicated with the mating surface on the downstream side of the rotation direction, and an end of the narrow groove on an upstream side of the rotation direction is disposed at the position which is the upstream side from the end of the narrow groove on the downstream side of the rotation direction and is rotated by an angle no more than 90 degrees from the mating surface on the downstream side of the rotation direction.


According to the invention of claim 2, the end of the narrow groove on the upstream side of the rotation direction is disposed at the position which is rotated to the upstream side by an angle no less than 45 degrees from the mating surface on the downstream side of the rotation direction.


Effect of the Invention

As effects of the invention, the effects shown as below are caused.


Namely, by providing the narrow grooves which do not prevent the generation of the oil film pressure, the friction-reducing effect is obtained with reducing the frictional area and the total volume of effluent oil is reduced.


By not communicating the end of the narrow groove on the downstream side of the rotation direction with the mating surface, the burr is not adhered when the narrow groove is processed and the process becomes easy. By not communicating the end of the narrow groove on the downstream side of the rotation direction with the mating surface, the reduction of the oil pressure nearby the mating surface on the downstream side of the rotation direction is relieved, in case that the mating surface of the lower halved member on the downstream side and the mating surface of the lower halved member on the upstream side is disposed in reverse positions, the oil pressure is at least able to be kept.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a front view of a slide bearing according to this embodiment.



FIG. 2(a) is a plan view of a halved member of the slide bearing according to this embodiment, FIG. 2(b) is a A-A line sectional view; and FIG. 2(c) is a B-B line sectional view.



FIG. 3(a) is three-dimensional graph which shows gradient of oil film pressure of the slide bearing with narrow grooves according to this embodiment (as calculated value), FIG. 3(b) is three-dimensional graph which shows gradient of oil film pressure of the slide bearing without narrow groove (as calculated value), and FIG. 3(c) is three-dimensional graph which shows gradient of oil film pressure of the slide bearing with narrow groove according to comparative example (as calculated value).



FIG. 4(a) is a plan view of a halved member of the slide bearing with narrow grooves which is communicated with the mating surface on the downstream side of the rotation direction, FIG. 4(b) is a C-C line sectional view; and FIG. 4(c) is a D-D line sectional view.



FIG. 5 is a plan view of a slide bearing in case a lower halved member is disposed in reverse positions.





DETAILED DESCRIPTION OF THE INVENTION

An embodiment of the invention is explained. The FIG. 1 is the front view of the slide bearing 1 and the up and down direction on the drawing is defined as the up and down direction and the near and far direction on the drawing is defined as the axial direction (the front and back direction).


Firstly, the halved members 2 which configure the slide bearing 1 concerning the first embodiment are explained with the FIG. 1 and the FIG. 2.


The slide bearing 1 is cylindrical member and it is adopted to the slide bearing structure of the crankshaft 11 of the engine as shown in the FIG. 1. The slide bearing 1 is configured by the two halved members 2, 2. The halved members 2, 2 have the shapes in which the cylinder has been divided in two in the direction parallel to the axial direction and are shaped as semicircle shape on the cross-section view. In the embodiment, the halved members 2, 2 are disposed in the top and the bottom and the mating surfaces are shaped at the right and the left. In the case that the crankshaft 11 is held by the slide bearing 1, the clearance gap is configured and lubricating oil is supplied from oil route which is not shown toward the clearance gap.


In the FIG. 2(a), upper and lower halved members 2 are shown. In the embodiment, the rotation direction of the crankshaft 11 is clockwise direction on the front view as the vector shown in the FIG. 1. In the bearing angle ω, the right edge in the FIG. 2(b) is defined as 0 degree and the counter clockwise direction shown in the FIG. 2(b) is positive direction. Thus, in the FIG. 2(b), the bearing angle ω at the left edge is defined as 180 degrees and the bearing angle ω at the down edge is defined as 270 degrees.


A groove is provided in the circumferential direction at the inner circumference of the upper halved member 2 and the circle hole is provided at the center. The mating surfaces are disposed at the right and left side of the upper halved member 2.


In the slide surface of the inner circumference of the lower halved member 2, narrow grooves 3 are configured at the edge in the axial direction.


The narrow grooves 3 are provided at the lower halved member 2. In the embodiment, the narrow grooves 3 are provided as two lines parallel to the axial direction. The end of the narrow grooves 3 on the downstream side of the rotation direction is provided to be adjacent to the mating surface on the downstream side of the rotation direction of the crankshaft 11 and not to be communicated with the mating surface on the downstream side of the rotation direction.


In detail, the end of the narrow grooves 3 on the downstream side of the rotation direction of the crankshaft 11 are disposed at the bearing angle ω0 which is bigger than 180 degrees where the mating surface on the downstream side of the rotation direction is located. Thus, the narrow groove 3 is provided from the bearing angle ω which is bigger than the angle of the mating surface on the downstream side of the rotation direction (the bearing angle is 180 degrees) toward the direction in which the bearing angle co is positive number (the counter clockwise direction) on the circumferential direction.


Thus, in the lower halved member 2, the mating surface on the right side in the FIG. 2(b) is the mating surface on the upstream side of the rotation direction and the mating surface on the left side in the FIG. 2(b) is the mating surface on the downstream side in the rotation direction.


The length 1 of the narrow groove 3 is configured as the length from the end of the narrow grooves 3 (the bearing angle is ω0) on the downstream side of the rotation direction to the end of the narrow grooves 3 (the bearing angle is ω1) on the upstream side of the rotation direction. Furthermore, the bearing angle ω1 is more than ω0 and not more than 270 degrees. More detailed, the bearing angle col is usually the range of 225 degrees to 270 degrees.


As shown in the FIG. 2(c), the narrow groove 3 is configured as the depth d is shallower than the bearing thickness D. The width of the narrow groove 3 is configured as w.


The narrow groove 3 is provided by machining the inner circumferential surface of the halved member 2. Then, the burr is not produced because of not communicating the end on the downstream side of the rotation direction with the mating surface on the downstream side of the rotation direction. Thus, in the case of providing the narrow groove 3 in such a way as to communicate the end on the downstream side of the rotation direction with the mating surface on the downstream side of the rotation direction, the burr is adhered around the end of the narrow groove 3 on the downstream side of the rotation direction and it is necessary to remove the burr. By not communicating the end on the downstream side of the rotation direction with the mating surface on the downstream side of the rotation direction, the burr is not adhered and it is not necessary to remove the burr.


Next, the oil film pressure gradient of slide bearing 1 with the narrow groove 3 is explained with the FIG. 3.


By providing the narrow groove 3 at the edge of the halved member 2 in the axial direction, as shown in the FIG. 3(a), the oil film pressure gradient at the edge of the halved member 2 in the axial direction is able to be changed. Thus, in the case of not providing the narrow groove 3 as shown in the FIG. 3(b), with increasing the pressure gradient which descends from the edge of the bearing to the center of the bearing, the suck back volume of the oil increases and the total volume of effluent oil can be reduced.


The slide bearing 101 to compare with the embodiment is shown in the FIG. 4.


As shown in the FIG. 4(a) to (c), the slide bearing 101 for comparison is configured two halved members 102, 102. Thus, the upper halved member 102 has the same configuration as the halved member 2 according to this embodiment and the illustration is omitted.


As shown in the FIGS. 4(a) and (b), in the slide surface of the inner circumference of the lower halved member 102, the narrow grooves 103 are configured at the edge in the axial direction.


As shown in the FIG. 4(b), the end of the narrow grooves 103 on the downstream side of the rotation direction is provided to be communicated with the mating surface of the crankshaft 11 on the downstream side of the rotation direction. The oil film pressure gradient of slide bearing 101 for comparison as described above is shown in the FIG. 3(c).


To compare with the FIG. 3(a) and the FIG. 3(c), in the slide bearing 1 according to this embodiment, the oil pressure nearby the mating surface on the downstream side of the rotation direction is higher compared to the oil pressure gradient of the slide bearing 101 for comparison.


Thus, as shown in the FIG. 5, in case that the lower halved member 2 is disposed to the upper halved member 2 in reverse positions, the oil pressure is at least able to be kept and the oil film thickness which is necessary for good lubrication of the slide bearing 1 is able to be kept.


As stated above, the slide bearing 1 in which halved members 2, 2 made by dividing a cylinder in two in a direction parallel to the axial direction are disposed vertically, narrow grooves 3 are provided at an end of the lower halved member 2 in the circumferential direction, an end of the narrow groove 3 on a downstream side of the rotation direction is disposed at the position which is adjacent to a mating surface on the downstream side of the rotation direction and not communicated with the mating surface on the downstream side of the rotation direction, and an end of the narrow groove 3 on an upstream side of the rotation direction is disposed at the position which is the upstream side from the end of the narrow groove 3 on the downstream side of the rotation direction and is rotated by an angle no more than 90 degrees from the mating surface on the downstream side of the rotation direction.


Then, the bearing angle ω at the mating surface on the downstream side of the rotation direction is 180 degrees and the bearing angle ω1 of the end on the upstream side of the rotation direction is more than ω0 and not more than 270 degrees and ω0 is more than 180 degrees.


By this structure, with providing the narrow grooves which do not prevent the generation of the oil film pressure, the friction-reducing effect is obtained while reducing the frictional area and the total volume of effluent oil is reduced.


By not communicating the end of the narrow groove 3 on the downstream side of the rotation direction with the mating surface, the burr is not adhered when the narrow groove 3 is processed and the process becomes easy. By not communicating the end of the narrow groove 3 on the downstream side of the rotation direction with the mating surface, the reduction of the oil pressure nearby the mating surface on the downstream side of the rotation direction is relieved, in case that the mating surface of the lower halved member 2 on the downstream side and the mating surface of the lower halved member 2 on the upstream side is disposed in reverse positions, and the oil pressure is at least able to be kept.


INDUSTRIAL APPLICABILITY

The present invention is acceptable to the skill of the slide bearing and acceptable to the slide bearing in which halved members made by dividing a cylinder in two in a direction parallel to the axial are disposed vertically.


DESCRIPTION OF NOTATIONS






    • 1 slide bearing


    • 2 halved member


    • 3 narrow groove


    • 11 crankshaft




Claims
  • 1. A slide bearing in which halved members made by dividing a cylinder in two in a direction parallel to the axial direction are disposed vertically, wherein a first groove is provided at the inner circumference of the upper halved member,wherein second grooves which are narrower than the first groove are provided at an end of the lower halved member in the circumferential direction,wherein an end of each of the second grooves on a downstream side of the rotation direction is disposed at the position which is adjacent to a mating surface on the downstream side of the rotation direction,wherein an end of each of the second grooves on an upstream side of the rotation direction is disposed at the position which is the upstream side from the ends of the second grooves on the downstream side of the rotation direction and is rotated by an angle no more than 90 degrees from the mating surface on the downstream side of the rotation direction, andwherein neither of the ends of the second grooves are communicated with the mating surfaces of the slide bearing.
  • 2. The slide bearing according to claim 1 wherein the end of each of the second grooves on the upstream side of the rotation direction is disposed at the position which is rotated to the upstream side by an angle no less than 45 degrees from the mating surface on the downstream side of the rotation direction.
Priority Claims (1)
Number Date Country Kind
2013-058660 Mar 2013 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2014/057594 3/19/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/148573 9/25/2014 WO A
US Referenced Citations (19)
Number Name Date Kind
1121904 Doehler Dec 1914 A
1940301 Grobel Dec 1933 A
3386783 Scheufler Jun 1968 A
4105267 Mori Aug 1978 A
4856366 Nikolaus Aug 1989 A
6082904 Ono et al. Jul 2000 A
6241394 Kallenberger Jun 2001 B1
8783954 Garnier Jul 2014 B2
8821023 Bresser Sep 2014 B2
8979378 Hikita Mar 2015 B2
20040062458 Mian Apr 2004 A1
20050201647 Kuroda Sep 2005 A1
20090257695 Ukai Oct 2009 A1
20100119182 Sugimoto May 2010 A1
20110058761 Ishigo Mar 2011 A1
20120294558 Ovares Nov 2012 A1
20130343682 Garnier Dec 2013 A1
20140169712 Suzuki Jun 2014 A1
20140248012 Hikita et al. Sep 2014 A1
Foreign Referenced Citations (9)
Number Date Country
1525266 Sep 1969 DE
102011005467 Sep 2012 DE
1144131 Mar 1969 GB
H03-48017 Mar 1991 JP
H06-346913 Dec 1994 JP
H08-121459 May 1996 JP
2003-532036 Oct 2003 JP
2011-089563 May 2011 JP
2013-194830 Sep 2013 JP
Non-Patent Literature Citations (1)
Entry
Extended European Search Report dated Feb. 16, 2016, in European Application No. 14770891.1-1751.
Related Publications (1)
Number Date Country
20160195127 A1 Jul 2016 US