The present invention generally relates to firearms, and more particularly to a slide catch and ejector assembly for autoloading pistols.
Subcompact firearms, such as semiautomatic autoloading pistols for concealed carry applications, present numerous design challenges due to the need to provide essentially the same functionality as full-size pistols, but in a relatively small physical package. Some subcompact pistols may have typical lengths between about 5-6 inches and weigh less than one pound in contrast to their longer and heavier full-size counterparts. Accordingly, it is desirable to minimize size and weight of these subcompact pistols to facilitate concealed carry by keeping the number of components required for a fully-functional pistol to minimum without sacrificing functionality and safety. Therefore, efficient use of limited available space which is at a premium is essential to providing lightweight and compact pistols suitable for concealed carry.
According to another aspect of full-size autoloading pistols, slide catch or hold mechanisms for holding the slide in an open position are known to facilitate inspection of the breech area of the pistol. Accordingly, a slide catch is desired that can be spatially and efficiently accommodated in the limited space available in a subcompact pistol format.
According to another aspect of the invention, a firearm such as a subcompact firearm is provided that includes a mechanism with the dual functionality of a slide hold or catch and a cartridge casing ejector. The single combination slide catch-ejector assembly functions to both (1) hold the slide open to expose the breech area for inspection and/or disassembling the firearm, and (2) eject spent or loaded cartridge casings from the firearm after discharge. In one embodiment, a subcompact firearm with combination slide catch-ejector assembly includes a slide catch for holding a slide in a first position, and an ejector conjoined to the slide catch for ejecting cartridge casings from the firearm.
In one embodiment, a firearm with slide catch-ejector assembly includes, a housing, a slide movably mounted on the housing for rearward and forward axial movement, and an assembly having a slide catch portion configured for engaging the slide and an ejector portion configured for ejecting cartridge casings from the firearm. The assembly is selectively movable in the housing between a deactivated position in which the slide catch portion is not engageable with the slide and an activated position in which the slide catch portion is engageable with the slide. In one embodiment, the ejector portion defines a cartridge striking surface that is movable into and out of axial alignment with a chamber that receives a cartridge via moving the assembly between the deactivated and activated positions. In another embodiment, the ejector portion is axially aligned with the chamber when the assembly is in the deactivated position.
In another embodiment, a firearm with slide catch includes a housing, a slide movably mounted on the housing for rearward and forward axial movement, a barrel disposed at least partially in the slide and defining a chamber for receiving a cartridge, and a slide catch movably disposed in the housing for holding the slide in a rearward position on the frame. The slide catch includes an outwardly-projecting ejector selectively movable from a first non-ejecting position to a second operating position via moving the slide catch, the ejector being axially aligned with the chamber when in the operating position to eject cartridge casings from the firearm. In one embodiment, the ejector is not axially aligned with the chamber when in the non-ejecting position. In some embodiment, the slide catch is selectively movable between a deactivated position in which the slide catch is not engageable with the slide and an activated position in which the slide catch portion is engageable with the slide. In one embodiment, the slide catch is engageable with a cutout in the slide.
In one embodiment, a slide catch-ejector assembly is provided for a firearm having a housing, a slide movably disposed on the housing for rearward and forward movement, and a barrel defining a chamber that receives a cartridge. The slide catch-ejector assembly includes a first slide catch portion defining a slide abutment surface configured to engage a cutout in the slide for holding a breech area of the firearm open, a second ejector portion defining a cartridge striking surface configured to contact a cartridge casing extracted from the chamber for ejecting the casing from the firearm, and a grip configured for operating the slide catch-ejector assembly by a user. The cartridge striking surface may face in an opposite direction from the slide abutment surface in one embodiment.
In another embodiment, a firearm with slide catch includes a housing, a slide movably mounted on the housing for rearward and forward axial movement, a barrel disposed at least partially in the slide and defining a chamber for receiving a cartridge, a slide catch configured for engaging the slide and slidable in the housing between a deactivated position in which the slide catch is not engageable with the slide and an activated position in which the slide catch portion is engageable with the slide, and an ejector configured for ejecting cartridge casings from the firearm and movable between an operating position in which the ejector is axially aligned with the chamber to eject cartridge casings from the firearm and a non-ejecting position in which the ejector is not axially aligned with the chamber. The slide catch operatively cooperates with the ejector such that moving the slide catch from the deactivated position to the activated position simultaneously moves the ejector from the operating position to the non-ejecting position. In one embodiment, the ejector is conjoined to the slide catch and movable simultaneously therewith.
A method of using a slide catch-ejector assembly in a firearm is also provided. In one embodiment, the method includes: providing a firearm having a housing, a slide slidably mounted on the housing for forward and rearward movement, a barrel defining a chamber for holding a cartridge, the barrel and slide defining a closed breech area therebetween, and a slide catch slidably disposed in the housing and defining an ejector being axially aligned with the chamber and operative to eject cartridge casings from the firearm after discharging the firearm; sliding the slide rearwards on the housing to open the breech area; sliding the slide catch; engaging the slide with the slide catch to hold the breech area open; and simultaneously moving the ejector out of alignment with the chamber via sliding the slide catch. In one embodiment, the sliding step includes sliding the slide catch vertically upwards in the housing. In another embodiment, sliding the slide catch moves the slide catch and ejector vertically upwards in the housing together.
The features of the preferred embodiments will be described with reference to the following drawings where like elements are labeled similarly, and in which:
The features and benefits of the invention are illustrated and described herein by reference to preferred embodiments. This description of preferred embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “affixed,” “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the preferred embodiments. Accordingly, the invention expressly should not be limited to such preferred embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
A preferred embodiment of a firearm will now be described for convenience with reference to a semi-automatic subcompact pistol. The principles and features of the preferred embodiment disclosed herein, however, may be used with equal benefit for other types of firearms, such as full size pistols and rifles. Accordingly, the invention is not limited for use with subcompact pistols alone.
Referring to
Pistol 20 further includes a barrel 26 that is movably disposed at least partially inside slide 24 and which includes a rear chamber block 28 defining an open chamber 30 therein for receiving a cartridge and breech area 23 located behind the chamber in slide 24. Barrel 26 further defines a longitudinal axis LA for pistol 20. Barrel 26 is moveable rearwards with slide 24 on firing control housing 80 in a conventional manner. Barrel 26 includes a conventional cam track or slot 31 configured to engage a corresponding camming cross pin 32 mounted transversely in frame 22 for arresting the rearward movement of the barrel after discharging pistol 20 (not shown). Cross pin 32 limits and stops rearward movement of barrel 26 after traveling a relatively short distance rearwards upon discharging pistol 20. This allows slide 24 to continue moving rearwards alone, thereby opening breech area 23 so that a spent cartridge casing may extracted from chamber 30 by extractor 33 and ejected from pistol 20 by slide catch-ejector assembly 120 through ejector port 21 in the slide. Thereafter, recoil spring returns slide 24 forward stripping a new cartridge from a magazine 50 and inserting the cartridge into chamber 30. Breech area 23 is re-closed and both slide 24 and barrel 26 are brought forward together to the ready-to-fire position shown in
With reference to
Although the foregoing firing control mechanism has been described with reference to a hammer which strikes the firing pin to discharge the pistol, in other embodiments contemplated the firing control housing may alternatively include an axially-movable striker that incorporates or contacts a firing pin for discharging the invention. Accordingly, the magazine disconnect mechanism according to the invention is not limited to hammer-actuated pistols or firearm alone.
With continuing reference to
To operably engage hammer 60 for cocking and releasing the hammer to discharge pistol 20, trigger bar 42 in one embodiment includes a laterally-extending portion such as trigger bar protrusion 69 as shown in
Hammer stop 62 preferably is biased into engagement with hammer 60 by hammer stop spring 68 mounted about hammer stop pin 63 as shown in
Operation of the firing control mechanism will now be described. Starting with pistol 20 in the ready-to-fire position shown in
According to one aspect of a preferred embodiment, pistol 20 includes a multi-functional combination slide catch-ejector assembly 120 having a first portion configured for holding the slide open to expose the breech area 23 for inspection and a second portion configured for ejecting cartridge casings from the pistol. Referring to
With continuing reference to
Referring to
Ejector 121, forming one portion of slide catch-ejector assembly 120, is movable and selectively positionable by a user (unlike some conventional fixed ejector designs) for axial alignment with barrel chamber 30 and a cartridge when loaded in the chamber for ejecting a spent cartridge casing from pistol 20. Ejector 121 is vertically movable between an upper non-ejecting position shown in
With continuing reference to
Slide catch-ejector assembly 120 is movable between a first upper activated position and a second lower deactivated position as indicated by the directional arrows in
To activate the slide catch 122 for holding the breech area 23 in an open position for inspection as needed, the user first manually retracts the slide rearward on firing control housing 80 from the fully forward position shown in
To return slide 24 forward, the user holds the slide and manually moves slide catch 122 downwards into the lower deactivated position of slide catch-ejector assembly 120 (not shown). Slide catch 122 concomitantly is removed from slide cutout 127b and no longer held rearward. The uses releases slide 24 which returns fully forward under the biasing force of recoil spring 29 to the position shown in
Referring now to
Slide catch-ejector assembly 150 operates in a similar manner to slide catch-ejector assembly 120 described above. To hold slide 24 rearward and breech area 23 in an open position, the user aligns cutout 127b with slide catch-ejector assembly 150 and pushes the slide catch assembly upwards from the lower deactivated position shown in
Slide 24 may then be released from slide catch-ejector assembly 150 by moving the slide slightly rearward so that the front facing rear surface 127c in cutout 127b disengages from rear facing slide abutment surface 127a on the slide catch-ejector assembly. Whereas slide catch-ejector assembly 120 must be manually returned downward to the lower position by the user, spring 160 automatically returns the slide catch-ejector assembly 150 downwards to the lower deactivated position shown in
While the foregoing description and drawings represent preferred or exemplary embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope and range of equivalents of the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. In addition, numerous variations in the methods/processes as applicable described herein may be made without departing from the spirit of the invention. One skilled in the art will further appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims and equivalents thereof, and not limited to the foregoing description or embodiments. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
This application claims the benefit of priority to U.S. Provisional Application No. 60/975,898 filed Sep. 28, 2007, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3857322 | Lichtman | Dec 1974 | A |
3967404 | Reynolds | Jul 1976 | A |
4549465 | Charron | Oct 1985 | A |
4627184 | Ruger et al. | Dec 1986 | A |
5024016 | Smith | Jun 1991 | A |
5608981 | Canaday | Mar 1997 | A |
5678340 | Moon | Oct 1997 | A |
5741996 | Ruger et al. | Apr 1998 | A |
5794373 | Moon | Aug 1998 | A |
5835978 | Canaday et al. | Nov 1998 | A |
6442882 | Dionne | Sep 2002 | B1 |
6513273 | da Silveira | Feb 2003 | B2 |
7103998 | McGarry | Sep 2006 | B2 |
7337570 | McGarry | Mar 2008 | B1 |
7337571 | McGarry | Mar 2008 | B2 |
7343706 | McGarry | Mar 2008 | B2 |
20050115127 | Szabo | Jun 2005 | A1 |
20060185212 | Curry et al. | Aug 2006 | A1 |
20070012170 | Spielberger | Jan 2007 | A1 |
20090071053 | Thomele et al. | Mar 2009 | A1 |
20100242329 | Carr et al. | Sep 2010 | A1 |
20100242330 | Carr et al. | Sep 2010 | A1 |
20100242331 | Carr et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2 515 333 | Apr 1983 | FR |
391 274 | Apr 1933 | GB |
Number | Date | Country | |
---|---|---|---|
20100281735 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
60975898 | Sep 2007 | US |