Injection molding is a manufacturing process for producing parts by injecting material into a mold. Injection molding machines comprise various components that work together to ultimately form a plastic or silicone part that is ejected from the mold. The basic parts of the mold are the cavity and ejector system. The mold comprises at least two mold halves within which the cavity is formed. When the two mold halves are closed, plastic or silicone is injected into the cavity to form the molded part. The mold halves are then split apart to remove or eject the finally molded part. To form more complex molded parts, additional movable and slidable elements on the mold halves operate to hold additional cavity elements and to release the finally molded part from the mold. The surfaces of these slidable elements are typically bound by surface to surface contact creating significant friction and wear. What is presented is an improved system to guide the movement of these injection mold components in an injection molding machine mold.
What is presented is a guidance system for a slide assembly for a mold for a plastic and/or silicone processing machine. The processing machine comprises at least two mold halves with at least one slide assembly mounted to at least one mold half. The slide assembly is movable parallel to the plane of the parting line of the two mold halves and generally perpendicular to the direction of the plane of separation of the two mold halves after a part has been formed. The slide assembly comprises a carrier for holding cavity forming parts, gibs that secure the carrier to the mold half, and a series of rollers arranged to engage with the carrier such that the rollers roll with the movement of the carrier parallel to the parting line of the two mold halves. The rollers do not bear any of the compression force used to press the two mold halves together.
At least one cam bar may be mounted to the carrier. In such embodiments the rollers may engage with the cam bars to engage with the carrier. In other embodiments, the rollers may be located adjacent to the gibs to engage with the carrier. A wear plate may be mounted between the carrier and the mold half.
Those skilled in the art will realize that this invention is capable of embodiments that are different from those shown and that details of the devices and methods can be changed in various manners without departing from the scope of this invention. Accordingly, the drawings and descriptions are to be regarded as including such equivalent embodiments as do not depart from the spirit and scope of this invention.
For a more complete understanding and appreciation of this invention, and its many advantages, reference will be made to the following detailed description taken in conjunction with the accompanying drawings.
Referring to the drawings, some of the reference numerals are used to designate the same or corresponding parts through several of the embodiments and figures shown and described. Corresponding parts are denoted in different embodiments with the addition of lowercase letters. Variations of corresponding parts in form or function that are depicted in the figures are described. It will be understood that variations in the embodiments can generally be interchanged without deviating from the invention.
Plastic and silicone injection molding processing machines form molded parts based on the injection of liquid plastic or silicone into a cavity that is formed into at least two mold halves that separate at a parting line. During part formation, the two mold halves are compressed together to hold the cavities shut and to prevent the leakage of liquid plastic or silicone from between the two halves. The pressures exerted are typically high and parts that are not reinforced are prone to wear and damage. For more complicated parts, a slide assembly may be incorporated onto one or both mold halves to hold additional cavity forming parts. These slide assemblies are crafted and machined with care to prolong their life and usefulness.
For purposes of illustration,
As best understood by comparing
The rollers 28 themselves are not powered or driven in any way. Instead, they move with the cam bars 26 as the carrier 16 is moved in whichever direction the slide assembly 14 is actuated. This reduces the friction of the movement of slide assembly 14 as it actuates during part formation.
The combination of the rollers 28 and the cam bars 26 improves the alignment of the component parts of the slide assembly 14 as well as reduces the surface wear of the various parts. More accurately aligning these surfaces reduces the overall wear of the slide assembly 14 and potentially on molding surfaces that are mating on the slide faces.
This invention has been described with reference to several preferred embodiments. Many modifications and alterations will occur to others upon reading and understanding the preceding specification. It is intended that the invention be construed as including all such alterations and modifications in so far as they come within the scope of the appended claims or the equivalents of these claims.
Number | Name | Date | Kind |
---|---|---|---|
4090833 | Saidla | May 1978 | A |
4172872 | Nagai | Oct 1979 | A |
4929166 | DiSimone | May 1990 | A |
5007814 | Saunders et al. | Apr 1991 | A |
5454709 | Leonhartsberger et al. | Oct 1995 | A |
5720918 | Wollschläger et al. | Feb 1998 | A |
7588437 | Clarke | Sep 2009 | B2 |
Number | Date | Country |
---|---|---|
102452148 | Mar 2014 | CN |
204019904 | Dec 2014 | CN |
Entry |
---|
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/19881, received from the International Bureau of WIPO, dated Aug. 31, 2021, 5 pages. |
International Search Report received in related International Application No. PCT/US20/19881 dated Jun. 8, 2020. |
Written Opinion of the International Search Report received in related International Application No. PCT/US20/19881 dated Jun. 8, 2020. |
Supplementary Extended European Search Report In Application No. 20763931.1-1014/3906143 PCT/US2020/019881 from the European Patent Office dated Sep. 7, 2022. |
Number | Date | Country | |
---|---|---|---|
20200269481 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62811372 | Feb 2019 | US |