Slide locking mechanism

Information

  • Patent Grant
  • 6530313
  • Patent Number
    6,530,313
  • Date Filed
    Thursday, September 21, 2000
    24 years ago
  • Date Issued
    Tuesday, March 11, 2003
    22 years ago
Abstract
A threaded member projecting from a press slide includes a projection on its upper end. A motor raises and lowers the threaded member in tandem with a slide adjustment mechanism. A plate disposed on a lower surface of a press crown is moved to slidably enclose the projection. The press slide is locked when the lower surface of the projection and the upper surface of the plate abut each other.
Description




BACKGROUND OF THE INVENTION




During maintenance or adjustment on a die press, the space between upper and lower dies is usually maximized. The slide attached to the upper die serves as a top-dead-center reference point. Maintenance or adjustments may require part or all of a tool, or the user's body, to come between the upper and lower dies. Accidental looseness in the die brake mechanism causes a safety hazard to exist. A slide lock mechanism prevents this type of accident.




For example, published Japanese patent number 10-29100 discloses a conventional slide locking device including a plurality of threaded shafts disposed on either side of the slide. Means for pivoting moves the threaded shafts up and down, and means for locking locks and unlocks the slide. Accommodating changes in the top-dead-center position caused by different die heights is difficult. Changing the die height changes the top-dead-center position by the same amount. Locking the slide at a new top-dead-center position requires adjusting the threaded shafts by the same amount as the top-dead-center position change.




In the conventional slide locking device, there is no linkage between the slide adjusting mechanism and the threaded shafts. Thus, if die height is changed, the threaded shafts must be manually and visually raised or lowered. This makes the operation complex and can lead to problems that include forgetting to lock the slide.




OBJECTS AND SUMMARY OF THE INVENTION




An object of the invention is to provide a slide locking mechanism that allows a slide to be locked without complex operations.




It is a further object of the invention to provide a slide locking mechanism with a direct drive control that allows a slide locking mechanism to be locked despite previous adjustments in die height.




It is a further object of the invention to provide a slide locking mechanism with an electronic drive control that allows the slide locking mechanism to be locked despite previous adjustments in die height.




It is a further object of the invention to provide a slide locking mechanism with an electronic drive control that allows the slide locking mechanism to locked at any slide position without manual adjustment.




Briefly stated, the present invention provides a slide locking device containing a threaded member projected from a press slide. A projection is disposed on the upper end of the threaded member. Means for raising and lowering the threaded member raises and lowers the threaded member in tandem with a slide adjustment mechanism. Disposed on a lower surface of a press crown is a plate, means for moving the plate, and blocks slidably supporting the plate. The press slide is locked when the lower surface of the projection and the upper surface of the plate abut each other.




According to an embodiment of the invention, there is provided a slide locking device comprising: a threaded member projected from the slide, means for raising and lowering the threaded member in tandem with die height adjustments, means for locking the threaded remember at a locked position, the locking means including a plate formed with a cut-out through which the threaded member loosely fits, means for moving the plate to a locked position, and a projection formed at an upper end of the threaded member so that the lower surface thereof abuts an upper surface of the plate in a locked position.




According to another embodiment of the invention, there is provided a means for raising and lowering a threaded member comprising: means for preventing the threaded members rotation, a worm wheel including a threaded section in an inner perimeter section thereof, the threaded section meshing with a threaded section of the threaded member, a worm shaft meshing with an outer perimeter of the worm wheel, means for transferring drive force from the slide adjusting mechanism to the worm shaft, and the means for transferring connected to a slide adjusting mechanism.




According to another embodiment of the invention, there is provided a means for raising and lowering a threaded member comprising: means for preventing the threaded member from rotating, a worm shaft meshing with an outer perimeter of a worm wheel, a motor driving the worm shaft, means for electronically measuring the die height, means for electronically detecting the position of the threaded member, means for measuring a position of the threaded member, and a control device for raising and lowering the threaded member based on a value measured by the die height measuring means.




The above, and other objects, feature and advantages of the present invention will become apparent from the following description read in conjunction with the accompanying drawings, in which like reference numerals designate the same elements.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a front-view showing a press with the present invention attached.





FIG. 2

is a top-view showing the inside of the slide as seen from arrow X in FIG.


1


.





FIG. 3

is a detailed view showing the main elements of the present invention.





FIG. 4

is a top-view showing the inside of the slide as seen from arrow Y in FIG.


3


.





FIG. 5A

is a cross-section drawing along) the line I—I on

FIG. 3

, showing an unlocked position.





FIG. 5B

is across-section drawing along the line I—I on

FIG. 3

, showing a locked position B.





FIG. 6

is a detailed drawing of the main elements of the present invention.





FIG. 7

is a detailed drawing of the main elements of the another embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIGS. 1 and 2

, a press


1


includes a crown


2


, columns


3


, and a bed


4


secured to each other by tie rods not shown in the figures. A bolster


5


is disposed on bed


4


. A slide


7


is disposed facing bolster


5


in a vertical direction. Slide


7


is supported by slide guides


6


disposed on columns


3


to allow vertical motion.

FIG. 1

shows slide


7


at a top-dead-center position.




A slide driving mechanism, not shown, is disposed inside crown


2


. Slide


7


is linked to the slide driving mechanism via multiple connecting rods


8


. Slide adjusting mechanisms


30


are disposed at the bottom of connecting rods


8


and multiple connecting sections


8




a


that connect with slide


7


. In this embodiment, four connecting sections


8




a


and slide-adjusting mechanisms


30


are disposed, with two of each on the left and two of each on the right in

FIGS. 1 and 2

.




A screw


31


and a worm wheel


32


, having an inner perimeter meshing with a threaded portion


31


a of screw


31


, are disposed in slide adjusting mechanism


30


. The outer perimeter of worm wheel


32


meshes with a worm screw


33


. Worm screw


33


is connected to an output shaft


10




a


of a gear box


10


via a coupling


9


. An input shaft


10




b


of gear box


10


is connected to a shaft


11


via a coupling


14


. A large pulley


12


is secured to shaft


11


. A belt


1


is extended between large pulley


12


and a small pulley


15


, disposed on a drive shaft of a motor


13


that drives slide adjusting mechanism


30


.




To adjust a die height H, motor


13


is activated and shaft


11


is rotated by belt


16


creating a drive force. The drive force is transferred to input shaft


10




b


of gear box


10


via a coupling


14


. The transferred drive force is output from output shaft


10




a


to rotate worm screw


33


and worm wheel


32


. Thus, shaft


11


transfers drive force to input shafts


10




a


of gear boxes


10


, and the drive force is output through the four output shafts


10




a,


causing the worm screws


33


to rotate in sync. Since worm screws


33


are rotated in sync, slide


7


can be raised or lowered by a small amount to adjust die height H.




A slide locking device


50


is disposed on the left and right of the lower surface of crown


2


and the side surface of slide


7


.




Referring to

FIG. 3

, slide


7


,is shown at a bottom-dead-center position. A bracket


51


is disposed on an inner side surface of slide


7


. Blocks


52




a,




52




b


are disposed on the upper surface of bracket


51


. A worm shaft


53


and a worm wheel


54


are disposed on block


52




a,


and worm shaft


53


meshes with the outer perimeter of worm wheel


54


. A threaded member


55


is projected so that it passes vertically through bracket


51


and blocks


52




a,




52




b.


A thread


55




a


of threaded member


55


meshes with the inner perimeter of worm wheel


54


. A means for prevention rotation of threaded member


55


, is formed from a key groove


55




b,


disposed on threaded member


55


, and a key (not shown in the figure) fixed to block


52


.




Blocks


72




a,




72




b


are fixed to the lower surface of crown


2


. A plate


73


is slidably disposed between blocks


72




a,




72




b


so that it can be slid left or right. A cylinder


74


is disposed on the lower surface of crown


2


to serve as means for moving plate


73


. A rod


74




a


of cylinder


74


is connected to plate


73


. Openings larger than a diameter of a projection


71


are disposed on blocks


72




a,




72




b.


A cut-out


73




a,


larger than the diameter of threaded member


55


and smaller than the diameter of protection


71


is disposed on plate


73


.




Additionally referring to

FIG. 4

, sprockets


56


,


57


are respectively disposed on worm shaft


53


and output shaft


10




a


of gear box


10


described above. A chain


58


extends between sprockets


56


,


57


. A tension adjusting device


59


is disposed on bracket


51


to adjust the tension of chain


58


. Tension adjusting device


59


is movable to the left or to the right in

FIG. 3. A

sprocket


59




a


is disposed on tension adjusting device


59


. Sprocket


59




a


meshes with chain


58


. Thus, by moving tension adjusting device


59


left or right, the tension of chain


58


is adjusted.




Referring to

FIGS. 5A

,


5


B and


6


, slide


7


is positioned at a top-dead-center position and adjustments made so that the lower surface of projection


71


is above the upper surface of plate


73


.




To lock slide


7


, a locked position is defined when, using cylinder


74


, plate


73


moves to a position where the upper surface of plate


73


abuts the lower surface of projection


71


. A cut-out


73




a


of plate


73


is larger than the diameter of threaded member


55


, i.e. the threaded member


55


is loosely fitted in cut-out


73




a.


Since cut-out


73




a


is smaller than projection


71


, the lower surface of projection


71


will abut the upper surface of plate


73


if slide


7


accidentally drops.




In this embodiment, slide


7


is locked by moving plate


73


to a locked position, i.e., a position where the lower surface of projectional, abuts the upper surface of plate


73


. As a result, when performing maintenance, inspection, or the like on the dies, slide


7


is prevented from accidentally dropping while all or part of the body of the user is in a danger zone. Where the top-dead-center position of slide


7


has been changed through die height adjustment, threaded member


55


is moved vertically in tandem with the change in die height H. Thus, the slide locking operation can be performed.




Referring back to

FIGS. 1 through 4

, when die height H is adjusted, threaded member


55


must be adjusted vertically so that the position of projection


71


will be the locked position as described above.




To adjust threaded member


55


vertically, the drive force of motor


13


is output to output shaft


10




a


via shaft


11


and gear box


10


, and is transferred to slide adjusting mechanism


30


. As the drive force of motor


13


is transferred, output shaft


10




a


rotates and sprocket


57


rotates. This rotation causes sprocket


56


, worm screw


53


, and worm wheel


54


to rotate via chain


58


. Threaded member


55


is prevented from being rotated by a key, not shown. Threaded section


55




a


meshes with the inner perimeter of worm gear


54


. Thus, the rotation of worm wheel


54


causes threaded member


55


to be adjusted vertically.




As a result, if the top-dead-center of slide


7


changes due to an adjustment in die height H, threaded member


55


is raised or lowered in sync with the adjustment, i.e., the fine adjustment of the vertical position of slide


7


. Thus, slide


7


can be locked regardless of adjustments to die height H.




According to this embodiment, the mechanism for raising and lowering threaded member


55


is mechanically linked to slide adjusting mechanism


30


so that the two are moved in tandem through a simple structure. In addition to the advantages described above, this mechanism provides slide


7


locking that is easy and inexpensive to produce and install.




Additionally referring now to

FIG. 7

, the drive force for vertically adjusting threaded member


55


is provided by a dedicated motor


91


. An encoder


92


detects the vertical position of threaded member


55


electronically. A second encoder (not shown), disposed in slide


7


, and measuring die height H. The second encoder (not shown) detects the number of rotations made by shaft


11


and control device


95


converts this value to die height H.




Motor


91


for vertically adjusting threaded member


55


is disposed on the side surfaces of blocks


52




a,




52




b.


A sprocket


93


is disposed on the drive shaft of motor


91


. A chain


94


is extended across sprocket


93


and sprocket


56


fixed to worm shaft


53


.




Encoder


92


is disposed on the upper surface of block


52




a.


The shaft of encoder


92


connects to worm shaft


53


via a flexible shaft (not shown in the figure).




Encoder


92


reads the number of rotations made by worm shaft


53


. The number of rotations is converted into a vertical position value for threaded member


55


by control device


95


. The die height value, measured by means for measuring die height, is also sent to control device


95


. Control device


95


compares the vertical position of threaded member


55


and the die height and sends signals to activate motor


91


so that projection


71


is at the locked position when slide


7


is at the top-dead-center position. Thus, slide


7


can be locked even if the top-dead-center position of slide,


7


has been changed through die height adjustments.




Threaded member


55


can be independently adjusted regardless of die height adjustments by activating motor


91


without going through control device


95


. Thus, projection


71


can be moved to the locked position regardless of the position of slide


7


.




Thus this embodiment allows threaded member


55


to be raised or lowered in sync with die height adjustments and conveniently allows slide


7


to be locked in any slide position. Additionally, a drive source is provided for the raising and lowering of threaded member


55


and a drive source is provided for slide


7


adjusting mechanism. This allows the slide to be locked reliably and safely using a device with a simple structure and that can be produced inexpensively.




In the embodiments described above, as long as the drive force can be converted to vertical motion of threaded member


55


, any type gear or wheel may be used. For example, bevel gears can be substituted for worm shaft


53


and worm wheels


54


. Additionally, belts and pulleys may be substituted for the chains and sprockets. In other words, any mechanism or device that can transfer drive force may be used.




Having described preferred embodiments of the invention with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention as defined in the appended claims.




Although only a single or few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Thus although a nail and screw may not be structural equivalents in that a nail relies entirely on friction between a wooden part and a cylindrical surface whereas a screw's helical surface positively engages the wooden part, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures.



Claims
  • 1. A slide locking mechanism for locking a slide comprising:a threaded member projecting from said slide; means for raising and lowering said threaded member in tandem with a die height adjustment; means for locking said threaded member at a locked position; said means for locking including a plate with a cut-out section; said threaded member being loosely fitted through said cut-out section; means for moving said plate to a locked position; a projection at an upper end of said threaded member; and a lower surface of said projection abutting an upper surface of said plate at said locked position to prevent accidental motion of said slide.
  • 2. A slide locking mechanism according to claim 1 wherein said means for raising and lowering said threaded member comprises:means for preventing said threaded member from rotating; a worm wheel including a threaded section in an inner perimeter section thereof; said threaded section meshing with a threaded section of said threaded member; a worm shaft meshing with an outer perimeter of said worm wheel; and means for transferring drive force connected to a slide adjusting mechanism for adjusting die height and transferring drive force from said slide adjusting mechanism to said worm shaft.
  • 3. A slide locking mechanism according to claim 1 wherein said means for raising and lowering said threaded member comprises:means for preventing said threaded member from rotating; a worm wheel including a threaded section in an inner perimeter section thereof; said threaded section meshing with a threaded section of said threaded member; a worm shaft meshing with an outer perimeter of said worm wheel; a motor driving said worm shaft; means for electronically measuring die height; means for electronically detecting a position of said threaded member and measuring a position of said threaded member; and a control device for raising and lowering said threaded member based on a value measured by said die height measuring means.
  • 4. A slide locking mechanism for a slide comprising:a member projecting from said slide; means for raising and lowering said member with respect to said slide, said member being adjusted independent of a die height adjustment; means for locking said member at a locked position with respect to said slide; and said means for locking said member including means for physically blocking motion of said member, whereby motion of said slide is prevented.
  • 5. A slide locking mechanism for a slide comprising:a member projecting from said slide; means for raising and lowering said member with respect to said slide; means for locking said member at a locked position with respect to said slide; said means for locking said member including means for physically blocking motion of said member, whereby motion of said slide is prevented; and said means for blocking said member comprises: a plate with a cut-out section through which said member is fitted; means for moving said plate to a locked position; a projection at an upper end of said member; and a lower surface of said projection abutting an upper surface of said plate at a locked position.
  • 6. A slide locking mechanism for a slide comprising:a member projecting from said slide; means for raising and lowering said member with respect to said slide; means for locking said member at a locked position with respect to said slide; said means for locking said member including means for physically blocking motion of said member, whereby motion of said slide is prevented; and said means for raising and lowering said member comprises: means for preventing said member from rotating; a worm wheel including a threaded section in an inner perimeter section thereof; said threaded section meshing with a threaded section of said member; a worm shaft meshing with an outer perimeter of said worm wheel; and means for transferring drive force connected to a slide adjusting mechanism for adjusting die height from said slide adjusting mechanism to said worm shaft.
  • 7. A slide locking mechanism for a slide comprising:a member projecting from said slide; means for raising and lowering said member with respect to said slide; means for locking said member at a locked position with respect to said slide; said means for locking said member including means for physically blocking motion of said member, whereby motion of said slide is prevented; and said means for raising and lowering said member comprises: means for preventing said member from rotating; a worm wheel including a threaded section in an inner perimeter section thereof; said threaded section meshing with a threaded section of said member; a worm shaft meshing with an outer perimeter of said worm wheel; a motor driving said worm shaft; means for electronically measuring die height; means for electronically detecting a position of said member; and a control device for raising and lowering said member based on a value measured by said means for electronically measuring die height.
  • 8. A slide locking mechanism as in claim 5, wherein said means for moving said plate to a locked position comprises a piston driving a rod attached to said plate.
  • 9. A slide locking mechanism as in claim 7, wherein said means for transferring drive force connected to a slide adjusting mechanism comprises:a first sprocket attaching to an output shaft connected to a motor; a chain connecting said first sprocket to a second sprocket; and said second sprocket attaching to said worm shaft.
  • 10. A slide locking mechanism as in claim 7, wherein said means for electronically measuring die height is an encoder.
  • 11. A side locking mechanism as in claim 7, wherein said means for electronically detecting a position of said member is an encoder connected to said worm shaft.
Priority Claims (1)
Number Date Country Kind
11-307929 Oct 1999 JP
US Referenced Citations (8)
Number Name Date Kind
2185551 Glasner et al. Jan 1940 A
3855920 Wright Dec 1974 A
3855921 Wright Dec 1974 A
3999477 Good et al. Dec 1976 A
4232773 Cipriani Nov 1980 A
4822266 Amano et al. Apr 1989 A
5357780 Brandnstetter Oct 1994 A
5513561 Biliskov May 1996 A
Foreign Referenced Citations (2)
Number Date Country
3342948 Nov 1983 DE
0839640 May 1998 EP