Refrigerators are an essential part of kitchens around the world. Refrigerators are known in the art to have cooled storage chambers for preserving food, drinks, and other items that require cooling. These appliances typically provide multiple compartments for cooling items at different temperatures such as one or more refrigerator compartment and one or more freezer compartment. Within the compartment are specific storage areas such as crisper, baskets, shelves and door bins.
Door bins typically contain frequently used items such as drinks and condiments that may come in oddly shaped bottles. One type of refrigerator uses door bins that are fixed to the inner side of the door. In order to access the contents of a door bin users must open the door and remove the desired items, then transfer them to a flat surface like the table or counter. In another system the door bin may be accessed through a second outer door while the main refrigerator compartment door remains closed. The door bins of this type of system may include a solid base with upright projection that receives and engages mating indentation in the corresponding door bin. Not only do the mating indentation of the door bins take up valuable storage space within the door bin and make the door bin more difficult to clean, the door bins of these systems are constructed in a way that, when the door bin is removed and disengaged from the base to transport items in the door bin to another location (i.e. a table), the solid base remains and may appear to be a “shelf” to a user. This configuration allows users to use the solid base as a shelf. When a flat surface in such a configuration is used as a shelf, any items placed on the frame can easily fall when the outermost door of such systems is opened or closed. Items placed therein may fall out of or into the refrigerator and break or spill.
One aspect of the present disclosure includes a door bin located in a main door and configured to pull out of the refrigerator through a second auxiliary door. The door bin is located on the door of an appliance and is accessible by opening the main door and by opening an auxiliary, outermost door. When accessed through the second door, the door bin may be laterally rolled/extended out and away from the standard storage position within the door, typically being a pair of glides. The door bin may also disengage the door of the refrigerator by hand and without the use of tools.
Yet another aspect of the present disclosure is generally directed to a refrigeration appliance door bin assembly that includes a refrigeration appliance door bin and a refrigeration appliance door bin bottom surface cover. The refrigeration appliance door bin includes: a substantially planar main base portion, at least one upwardly extending wall that is free of an indentation, apertures or recesses extending upward from the main base portion surrounding and thereby defining an interior volume of the refrigeration appliance door bin where the interior volume is sized to fit within a sub-volume within a larger volume of a door where the larger volume of the door is defined by a top wall, a bottom wall and two side walls of the door; and a downwardly extending perimeter lip portion. The main base portion and the downwardly extending lip portion define a downwardly facing door bin frame engagement space and the main base portion establishes the door bin frame cavity upper surface and the downwardly extending lip portion establishes an exterior surface of the door bin frame engagement space. The door bin engagement space engages a door bin frame of a refrigerator spaced within the door of a refrigerator such that the downwardly extending lip portion surrounds an exterior portion of the door bin frame and prevents substantial movement of the door bin when the door bin is engaged with the door bin frame caused by a refrigeration appliance door opening force or a refrigeration appliance door closing force. The refrigeration appliance door bin bottom surface cover is removably engaged with the refrigeration appliance door bin's substantially planar main base portion and spaced within the interior volume of the refrigeration appliance door bin. The refrigeration appliance door bin bottom surface cover is removable by hand and without the use of tools from the interior volume of the substantially planar main base portion. The refrigeration appliance door bin bottom surface cover covers at least one recess or aperture on a bottom of the refrigeration appliance door bin and the refrigeration appliance door bin bottom surface cover is engaged with at least a portion of the substantially planar main base portion.
A further aspect of the present disclosure is generally directed to an appliance that includes: a door bin frame further comprising at least one door bin frame support member that extends around and defines an aperture; and a door bin that includes: a substantially planar main base portion; an upwardly extending wall section extending upward from the substantially planar main base portion that surrounds and defines an interior volume of the door bin; and a downwardly extending perimeter lip portion. The main base portion and the downwardly extending lip portion define a downwardly facing door bin frame engagement space and the main base portion establishes the door bin frame cavity upper surface and the downwardly extending lip portion establishes an exterior surface of the door bin frame engagement space; the door bin engagement space engages a door bin frame of a refrigerator spaced within the door of a refrigerator such that the downwardly extending lip portion surrounds an exterior portion of the door bin frame and prevents substantial movement of the door bin when the door bin is engaged with the door bin frame caused by a refrigeration appliance door opening force or a refrigeration appliance door closing force; wherein the upwardly extending wall section is free of indentations or recessed portions configured to mate with a portion of an appliance and that project into the interior volume of the bin. The appliance cabinet has an interior storage area defined by at least a first side wall, a second side wall, a back wall, and a rotatably connected door system that includes a main cabinet door and an exterior door. The main cabinet door provides user access to the interior storage area of the appliance cabinet and wherein the exterior door provides access to the door bin when positioned within the rotably connected door system, but not unobstructed access to the interior storage area. The sliding mechanism assembly includes an interior facing bracket mounted to at least an interior facing surface of the main cabinet door and slidably engaged to a sliding mechanism, allowing the door bin to extend linearly outward.
Yet another aspect of the present disclosure includes a method for removing a door bin from a door frame where the method includes the steps of: providing a refrigerator comprising a cabinet, a main cabinet door for allowing access to an interior volume of the cabinet, wherein the main cabinet door defines an interior door volume and an exterior door that provides access to the interior door volume; selectively opening the exterior door such that a side of a door bin spaced with the interior door volume faces a user of the refrigerator or opening the main cabinet door such that an opposite side of the door bin faces the user of the refrigerator; sliding the door bin away from the interior of the cabinet when the exterior door is open, the door bin being removably engaged to a door bin frame attached to a sliding mechanism disposed within the interior door volume; and lifting the door bin by hand and without the use of tools from the door bin frame to disengage the door bin from the door bin frame and remove the door bin from the refrigerator. The method may also include the step of setting the bin on a surface that is not part of the refrigerator to provide convenient access to the door bin and the contents of the door bin. The door bin has a substantially rectangular cuboid shape where the sides of the door bin are free of any indentation, aperture or recess that mates with or engages a movable portion of an appliance.
The removable door bin systems of the present disclosure may also include a door bin with an interior volume that is defined by a planar base portion and at least one upwardly extending wall section that extends up from the planar base portion. The removable bin system also typically includes a door bin frame that can be connected and disconnected from the door bin and the door bin retained in engagement with the door bin frame using a downwardly extending lip portion of the door bin. The downwardly extending lip portion extends down from the planar base section of the door bin to create an engagement space that is sized to snugly surround an exterior portion of the door bin frame thereby preventing substantial lateral movement of the door bin when the door bin is connected with the door bin frame. Furthermore, the door bin frame defines a perimeter around at least one aperture. The aperture is typically sized to prevent users from placing items on the door bin frame when the bin is removed and may also prevent the user from perceiving the door bin frame as a shelf. Such a feature prevents items from being placed on the frame and falling into the refrigerator or out of the refrigerator due to the force of the outermost door on the main cabinet door being opened or closed.
The door bin may include a door bin bottom surface cover that is sized and shaped to cover any apertures in the bottom of the door bin frame. The bottom surface cover can be a plastic plate with a wooden finish to give the door bin an elegant look. Other finishes, such as a metallic or clear finish would also be possible.
In addition, at least the upwardly extending side wall sections of the door bin are free of indentations or recessed portions configured to mate with a portion of an appliance that project into the interior volume of the bin. Typically all upwardly extending wall sections of the door bin are free of indentations or recessed portions configured to mate with a portion of an appliance that project into the interior volume of the bin. In fact, all upwardly extending wall sections are typically free of any kind of indentation or recessed portions or apertures. This design allows the door bin to fit snugly within the door of the appliance while maximizing storage space within the bin and the interior volume of the appliance. In addition, the flat walls provide a more elegant look and easier to clean food, beverage or other debris than walls with a recessed portion.
The appliance door bin may be used in several applications. It may have use areas outside of refrigeration, like tool boxes, shelving, and file cabinets. The present disclosure should not be understood to be limited to use solely in a refrigerator or other appliance.
Another aspect of the present disclosure includes the appliance and the ability of the door bin to pull and extend the bin out laterally once an auxiliary door is in the open position. The door bin is engaged with the main door, but the outer, auxiliary door also provides direct access to the door bin without the main cabinet door being opened. The auxiliary door can share a hinge with the main door and open coaxially with the main door in order to rotate in the same axis as the main door, but this is not necessarily so. Conceivably, the two doors could rotate about different axes.
An appliance typically uses the door bin described above with the optional bottom surface cover. In addition, the appliance cabinet has an interior storage area defined by at least a first side wall, a second side wall, a back wall, and a rotatably connected door system. The rotatably connected door system may include a main door to access the interior storage area, and another auxiliary door that rotates in the same axis as the main door and provides access to the door bin. A sliding mechanism, which typically consists of a bracket mounted to first door and a slidably engaged track which allows the door bin to extend linearly out of the auxiliary door by at least about forty percent of the length of the mounting bracket for the bin glides that support the door bin frame to about one hundred percent from the primary storage position to an extended position. The extended position is typically an extension of at least about 2 inches and typically from about 2 inches to about 5 inches away from the primary storage position.
These and other aspects, objects, and features of the present disclosure and claimed invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
Before the present disclosure is described further, it is to be understood that the present disclosure is not limited to the particular embodiments of the disclosure described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments/aspects, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in scope of the present disclosure.
In this specification and the appended claims, the singular forms “a,” “an” and “the” include plural reference unless the context clearly dictates otherwise.
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the orientation shown in
Referring to
The refrigerator 10 may have a fresh food compartment with a normal operating temperature above about 32° F. and a freezer compartment with a normal operating temperature of about 32° F. or below to hold foodstuffs, ice, or anything else that needs to be refrigerated at certain temperatures. The refrigerator may also have a door(s) 12 that provides selective access to the interior of the fresh food compartment or the freezer compartment, but does not open the first door to the fresh food compartment or freezer compartment. The refrigerator may also employ solely fresh food compartments or solely freezer compartments. Additionally, the appliance may have a single fresh food compartment or a single freezer compartment along with one or more main door 14. As seen in
Still referring to
First door 14, shown according to one embodiment in
As shown in
Second door 12 may be generally rectangular with a thickness Z of from about 0.5 inch to about 1.5 inches and be constructed of plastic with foam or other thermal insulation. The second door may also be constructed using any other materials or combination of materials known in the art such as those necessary to form a clear glass door to allow visual inspection of the door bin when second door 12 is closed. The second door 12 may connect to top hinge 42 along a top portion substantially near one side, and the second door 12 may connect to bottom hinge 44 along a bottom potion substantially near the same side, allowing second door 12 to rotate about axis X. Door to hinge connections may use a metal or bolt or screw to attach doors to hinges. Alternatively, connections may be made with any other connection known in the art. Hinges 42, 44 may be fixed to cabinet 11 with epoxy, screws, or any method known in the art. First door 14 may open with second door 12 as shown in
Also seen in
As seen in
The base portion and the downwardly extending outside door bin frame retaining walls 96 define a downwardly facing door bin fi 120 and the base portion 56 establishes the door bin frame cavity upper surface 130 and the downwardly extending outside door bin frame retaining walls 96 establish the exterior surface of the door bin frame engagement space. The door bin engagement space engages the door bin frame 18 such that the downwardly extending outside door bin frame retaining walls 96 surrounds an exterior portion of the door bin frame and prevents substantial movement of the door bin caused by a refrigeration appliance door opening force or a refrigeration appliance door closing force when the door bin is engaged with the door bin frame.
As seen in
Door bin frame 18 may be of a generally rectangular shape with at least four sides that create aperture perimeter 78 around aperture 66. The at least four sides define aperture perimeter 78. The sides preferably have side frame width 72 of approximately 2 inches and front and rear frame width 74 of approximately 1 inch. The door bin frame typically has a height 76 of from about 1 inch to about 2 inches, more typically approximately 1.2 inches. Door bin frame 18 may be made of a substantially rigid material, typically a plastic or a wood material, and may be finished with chrome or other color.
As seen in
To install the door frame into engagement with the sliding mechanism on each side of the interior surface/liner of the door, the door frame is inserted at an angle such that frame tab 100 is spaced under the frame engaging tab 71 of the sliding mechanism. Thereafter, the frame is dropped down into a snap-fit engagement with the spring clip 73. This process is shown generally in
As shown in
Door bin 16 may be engaged or disengaged from door bin frame 18. As discussed somewhat previously and as shown in
It will be understood by one having ordinary skill in the art that construction of the described devices and systems of the present disclosure and other components is not limited to any specific material. Other exemplary embodiments disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the present disclosure and claimed invention as shown in the exemplary embodiments are illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within the described processes may be combined with other disclosed processes or steps to form structures within the scope of the present disclosure and claimed invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present disclosure, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 15/724,801, filed on Oct. 4, 2017, entitled “SLIDE OUT DOOR BIN,” pending, which is a continuation of U.S. patent application Ser. No. 15/356,148, filed on Nov. 18, 2016, entitled “SLIDE OUT DOOR BIN,” now U.S. Pat. No. 9,816,746, the disclosures of which are hereby incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 15724801 | Oct 2017 | US |
Child | 16206106 | US | |
Parent | 15356148 | Nov 2016 | US |
Child | 15724801 | US |