The present invention relates to a slide rail assembly, in which a mutual blocking relationship between two slide rails is capable of being released through an operation member.
As shown in the U.S. Pat. No. 10,041,535 B2, a slide rail assembly including a first rail, a second rail, a third rail, a locking member and an operation member is disclosed. The second rail is capable of moving relative to the first rail from a first position to a second position. The third rail is capable of moving relative to the second rail. The locking member is mounted to the second rail for locking a portion of the first rail when the second rail is at the second position, such that the second rail is incapable of being moved relative to the first rail from the second position to the first position. A user can apply a force to the operation member to allow the operation member to displace relative to the second rail from a first predetermined position to a second predetermined position, such that the locking member is released from locking the portion of the first rail.
As shown in the U.S. Pat. No. 9,681,749 B2, a slide rail assembly including a first rail, a second rail, a blocking member, a positioning member and an operation member is disclosed. The blocking member is attached to the first rail. The positioning member is arranged at the second rail. The operation member is movably connected to the first rail. When the second rail is displaced relative to the first rail to an extending position, the second rail is prevented from retracting from the extending position along a retracting direction through the positioning member being blocked by the blocking member. The operation member is capable of being displaced from an initial position to a predetermined position through a force applied by a user. During the process that the operation member is displaced to the predetermined position, the operation member drives the blocking member of the first rail, such that the blocking member is in an unblocking state which is incapable of blocking the positioning member any longer, and the second rail is allowed to retract from the extending position along the retracting direction.
However, depending on different market demands, sometimes it is not desirable to use the methods of the above two patents for releasing the mutual blocking relationship between two slide rails. Therefore, development of a different product to satisfy various market demands becomes an issue that cannot be ignored.
According to one aspect of the present invention, a slide rail assembly includes a first rail, a second rail, a working member and an operation member. The first rail includes a blocking member and a positioning member. The blocking member includes an elastic material. The second rail is capable of displacing relative to the first rail. The second rail includes a predetermined feature. The working member is mounted to the second rail. The operation member is for operating the blocking member. When the second rail is at a first extending position relative to the first rail, the blocking member is in a blocking state capable of blocking the working member so as to prevent the second rail from displacing from the first extending position along a retracting direction. The operation member is capable of being operated to move from a first operation position to a second operation position to drive the blocking member to leave the blocking state, such that the blocking member is incapable of blocking the working member so as to allow the second rail to displace from the first extending position along the retracting direction. When the second rail is displaced relative to the first rail from the first extending position to a second extending position along the retracting direction, the second rail is engaged with the positioning member through the predetermined feature so as to prevent the second rail from leaving the second extending position.
Preferably, the slide rail assembly further includes a third rail. The second rail is movably mounted between the first rail and the third rail.
Preferably, the positioning member includes an elastic material.
Preferably, the positioning member includes a positioning portion. During a process that the second rail is displaced from the first extending position to the second extending position along the retracting direction, the second rail drives the positioning member to move from a first predetermined state to a second predetermined state through the predetermined feature, such that the positioning member accumulates an elastic force. When the second rail reaches the second extending position, the positioning member returns from the second predetermined state to the first predetermined state in response to the release of the elastic force, such that the positioning member is engaged with the predetermined feature through the positioning portion to prevent the second rail from leaving the second extending position.
Preferably, when the second rail is at the first extending position relative to the first rail, the slide rail assembly has a first length. When the second rail is at the second extending position relative to the first rail, the slide rail assembly has a second length less than the first length.
Preferably, when the second rail is at the second extending position, the third rail is capable of being displaced relative to the second rail along an opening direction so as to be detached from a passage of the second rail.
Preferably, the operation member is operably mounted to the second rail.
Preferably, when the third rail is reinserted into the passage of the second rail from an outside of the passage of the second rail along the retracting direction, the third rail drives the operation member to move relative to the second rail from the second operation position to the first operation position to drive the positioning member to leave the first predetermined state, such that the positioning portion of the positioning member is no longer engaged with the predetermined feature so as to allow the second rail to displace from the second extending position along the retracting direction.
Preferably, the positioning member is driven to leave the first predetermined state through the operation member being operably moved from the second operation position to the first operation position, such that the positioning portion of the positioning member is no longer engaged with the predetermined feature so as to allow the second rail to displace from the second extending position along the retracting direction.
Preferably, the working member is movably mounted to the second rail, and the slide rail assembly further includes an elastic member for providing an elastic force to the working member.
According to another aspect of the present invention, a slide rail assembly includes a first rail, a second rail and an operation member. The first rail includes a blocking member and a positioning member. The second rail is capable of displacing relative to the first rail. When the second rail is at a first extending position relative to the first rail, the blocking member is for blocking the second rail so as to prevent the second rail from displacing from the first extending position along a retracting direction. The blocking member is driven through the operation member being operably moved from a first operation position to a second operation position, such that the blocking member is incapable of blocking the second rail to allow the second rail to displace from the first extending position along the retracting direction. When the second rail is displaced relative to the first rail from the first extending position to a second extending position along the retracting direction, the positioning member is for blocking the second rail so as to prevent the second rail from leaving the second extending position. The positioning member is driven through the operation member being operably moved from the second operation position to the first operation position, such that the positioning member is incapable of blocking the second rail to allow the second rail to leave the second extending position.
According to yet another aspect of the present invention, a slide rail assembly includes a first rail, a second rail and an operation member. The first rail includes a positioning member. The second rail is capable of displacing relative to the first rail. The second rail includes a predetermined feature. When the second rail is displaced relative to the first rail from a first extending position to a second extending position along a retracting direction, the second rail is engaged with the positioning member through the predetermined feature to prevent the second rail from leaving the second extending position. The positioning member is driven through the operation member being operably moved from an operation position to another operation position, such that the predetermined feature is no longer engaged with the positioning member so as to allow the second rail to leave the second extending position.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
As shown in
As shown in
Preferably, both of the blocking member 32 and the positioning member 34 are arranged at the longitudinal wall 30 of the first rail 22.
Preferably, the blocking member 32 includes a first guiding portion 36a, a second guiding portion 36b and a supporting structure 38. An end of the first guiding portion 36a and an end of the second guiding portion 36b are connected to the longitudinal wall 30 of the first rail 22. Both of the first guiding portion 36a and the second guiding portion 36b may exemplarily be inclined surfaces or curved surfaces. The supporting structure 38 is located between the first guiding portion 36a and the second guiding portion 36b. The supporting structure 38 includes a blocking section 40, a guiding section 42 and a longitudinal section 44. Herein, the blocking section 40 is a blocking wall (or an upright wall), which is only exemplary, and the present invention is not limited thereto. The longitudinal section 44 is located between the blocking section 40 and the guiding section 42. The guiding section 42 may exemplarily be an inclined surface or a curved surface. Herein, the blocking member 32 is exemplarily an elastic sheet structure, and protrudes from the longitudinal wall 30 of the first rail 22 and faces toward the second rail 24.
Preferably, the positioning member 34 includes a positioning portion 46. Herein, the positioning portion 46 is an edge wall of a space (such as a hole), which is only exemplary, and the present invention is not limited thereto.
Preferably, the positioning member 34 further includes a first guiding feature 48 and a second guiding feature 50, and the positioning portion 46 is located between the first guiding feature 48 and the second guiding feature 50. Surfaces of the first guiding feature 48 and the second guiding feature 50 may exemplarily be inclined surfaces or curved surfaces. Herein, the positioning member 34 is exemplarily an elastic sheet structure, and protrudes from the longitudinal wall 30 of the first rail 22 and faces toward the second rail 24.
The blocking member 32 and the positioning member 34 are spaced by a distance along the X-axis direction, and the blocking member 32 is closer to a front end portion 22a of the first rail 22 than the positioning member 34. The blocking member 32 and the positioning member 34 are spaced by a distance along the Z-axis direction.
The second rail 24 includes a first wall 52a, a second wall 52b and a longitudinal wall 54 connected between the first wall 52a and the second wall 52b of the second rail 24. The first wall 52a, the second wall 52b and the longitudinal wall 54 of the second rail 24 together define a second passage 55. The second passage 55 is for accommodating the third rail 26. The third rail 26 includes a first wall 56a, a second wall 56b and a longitudinal wall 58 connected between the first wall 56a and the second wall 56b of the third rail 26.
As shown in
Preferably, the predetermined feature 61 is a protrusion arranged on the first side L1 of the longitudinal wall 54 of the second rail 24. Herein, the predetermined feature 61 is a fixing pin connected to the longitudinal wall 54 of the second rail 24, which is only exemplary, and the present disclosure in not limited thereto. For example, in other embodiment, the predetermined feature 61 can be a protruding portion integrally formed on the longitudinal wall 54 of the second rail 24.
Preferably, the slide rail assembly further includes a working member 60 movably mounted to the second rail 24. Herein, the working member 60 is pivotally connected to the second side L2 of the longitudinal wall 54 of the second rail 24 through a shaft member 62, which is only exemplary, and the present disclosure in not limited thereto.
Preferably, the slide rail assembly further includes an elastic member 64 for providing an elastic force to the working member 60.
Preferably, the longitudinal wall 54 of the second rail 24 has a through hole 66 communicating the first side L1 and the second side L2 of the second rail 24. The working member 60 includes an extending portion 68 passing through a portion of the through hole 66 and protruding from the first side L1 of the second rail 24. The extending portion 68 is configured to be cooperated with the blocking member 32 of the first rail 22.
The slide rail assembly includes an operation member 70 for operating the blocking member 32 and the positioning member 34. The operation member 70 is operably mounted to the second rail 24. For example, the operation member 70 is movably mounted to the first side L1 of the longitudinal wall 54 of the second rail 24. The operation member 70 includes an operation portion 72, a driving portion 74 and a middle portion 76 connected between the operation portion 72 and the driving portion 74.
Preferably, the operation portion 72 is adjacent to a front end portion 24a of the second rail 24, and the driving portion 74 is adjacent to a rear end portion 24b of the second rail 24.
Preferably, the second rail 24 and the operation member 70 have limiting features cooperated with each other, such that the operation member 70 is capable of longitudinally moving relative to the second rail 24 within a limited range. Herein, the second rail 24 and the operation member 70 are mounted to each other through at least one connecting member 80 passing through a portion of at least one elongated hole 78, which is only exemplary, and the present disclosure in not limited thereto. That is, in the embodiment, the limiting features of the second rail 24 and the operation member 70 are the at least one connecting member 80 and the at least one elongated hole 78.
Preferably, a first opening 82 is formed on the longitudinal wall 54 of the second rail 24. A second opening 84 is formed on the operation member 70. The second opening 84 is corresponding to the first opening 82 and a size of the second opening 84 is less than a size of the first opening 82. The operation portion 72 is adjacent to the second opening 84. The second opening 84 is adapted to be passed through by a finger of the user to allow the user to apply a force to the operation portion 72, so as to drive the operation member 70 to move.
Preferably, the driving portion 74 of the operation member 70 includes a first driving section 86 and a second driving section 88 located at different heights. The first driving section 86 is for driving the blocking member 32 to move elastically. The second driving section 88 is for driving the positioning member 34 to move elastically.
The height of the first driving section 86 is corresponding to a height of the blocking member 32. The height of the second driving section 88 is corresponding to a height of the positioning member 34.
Preferably, the operation member 70 further includes a first space S1 and a second space S2 communicating two sides of the operation member 70. The first driving section 86 is located behind the first space S1, and the second driving section 88 is located in front of the second space S2 (as shown in
Preferably, the extending portion 68 of the working member 60 extends to the first space S1 of the operation member 70 (as shown in
Preferably, at least one extending hole 90 is formed on the longitudinal wall 54 of the second rail 24 for communicating the first side L1 and the second side L2 of the second rail 24. The operation member 70 further includes at least one auxiliary portion 92 passing through a portion of the at least one extending hole 90 and stretching out from the second side L2 of the second rail 24.
As shown in
Preferably, when the operation member 70 is located at the first operation position P1 relative to the second rail 24, the predetermined feature 61 of the second rail 24 is located inside the second space S2, and the predetermined feature 61 of the second rail 24 and the second driving section 88 of the operation member 70 are close to each other (as shown in
As shown in
When the second rail 24 is at the first extending position E1 relative to the first rail 22, the blocking member 32 of the first rail 22 is in a blocking state Q1 capable of blocking the working member 60 (i.e., blocking the second rail 24; as shown in
As shown in
As shown in
Specifically, during a process that the second rail 24 is displaced from the first extending position E1 to the second extending position E2 along the retracting direction D2, the second rail 24 contacts the first guiding feature 48 of the positioning member 34 through the predetermined feature 61 to drive the positioning member 34 to move from a first predetermined state W1 (as shown in
As shown in
As shown in
When the second rail 24 is desired to be displaced relative to the first rail 22 from the second extending position E2 to a retracting position (such as a fully retracting position) along the retracting direction D2, the third rail 26 can be reinserted into the second passage 55 of the second rail 24 (as shown in
As shown in
Moreover, during the process that the second rail 24 is displaced from the retracting position (such as the fully retracing position) to the first extending position E1 along the opening direction D1, the extending portion 68 of the working member 60 is capable of moving along the guiding section 42 and the longitudinal section 44 of blocking member 32 of the first rail 22 so as to be guided to the blocking section 40 (which can refer to
To sum up, the slide rail assembly according to the embodiment of the present invention includes the following features.
First, the blocking relationship between the second rail 24 and the first rail 22 is capable of being released through the operating member 70 operating the blocking member 32 or the positioning member 34, such that the second rail 24 is allowed to displace relative to the first rail 22 from an extending position (such as the first extending position E1 or the second extending position E2) along the retracting direction D2.
Second, when the second rail 24 is displaced relative to the first rail 22 from the first extending position E1 to the second extending position E2 along the retracting direction D2, the second rail 24 is engaged with the positioning member 34 through the predetermined feature 61 so as to prevent the second rail 24 from leaving the second extending position E2. With the operation member 70 being operably moved from an operation position to another operation position to drive the positioning member 34, the predetermined feature 61 is allowed to disengage from the positioning member 34 so as to allow the second rail 24 to displace from the second extending position E2.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
109147232 | Dec 2020 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6402275 | Yang | Jun 2002 | B1 |
6899408 | Chen | May 2005 | B2 |
7404611 | Que | Jul 2008 | B1 |
8585164 | Chen | Nov 2013 | B2 |
8733864 | Chen | May 2014 | B2 |
9681749 | Chen | Jun 2017 | B2 |
9709091 | Chen | Jul 2017 | B2 |
9992906 | Chen | Jun 2018 | B2 |
10041535 | Chen | Aug 2018 | B2 |
10334950 | Chen | Jul 2019 | B2 |
10342341 | Chen | Jul 2019 | B2 |
10413065 | Chen | Sep 2019 | B2 |
10477965 | Chen | Nov 2019 | B1 |
10499738 | Chen | Dec 2019 | B2 |
10568426 | Chen | Feb 2020 | B1 |
10716398 | Chen | Jul 2020 | B1 |
10736422 | Chen | Aug 2020 | B2 |
10806255 | Chen | Oct 2020 | B1 |
10918209 | Chen | Feb 2021 | B1 |
10980346 | Chen | Apr 2021 | B2 |
11076694 | Chen | Aug 2021 | B2 |
11134776 | Chen | Oct 2021 | B2 |
11246410 | Chen | Feb 2022 | B2 |
20180031037 | Chen | Feb 2018 | A1 |
20180070723 | Chen | Mar 2018 | A1 |
20190082836 | Chen | Mar 2019 | A1 |
20190274428 | Chen | Sep 2019 | A1 |
20200392990 | Chen | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
3088768 | Sep 2002 | JP |
3097862 | Feb 2004 | JP |
3177386 | Aug 2012 | JP |
2017-127625 | Jul 2017 | JP |
2019-118792 | Jul 2019 | JP |
2020-192306 | Dec 2020 | JP |
I704889 | Sep 2020 | TW |
I706749 | Oct 2020 | TW |
Number | Date | Country | |
---|---|---|---|
20220202181 A1 | Jun 2022 | US |