The present invention is related to a slide-type variable resistor, and more particularly related to a slide-type variable resistor with two side guiding tracks for guiding a brush base when doing the sliding operation.
It is common in our daily life to adjust the value of an output voltage signals by using a manipulating device, such as the variable resistor. Based on the type of operation, the variable resistors can be sorted as rotating-type variable resistors and slide-type variable resistors.
As mentioned, because the brush base PA4 is designed to move along the sliding rods PA3, which are merely supported by the fixing parts PA2 at the opposite ends of the sliding rod PA3, the sliding rods PA3 might be easily escaped from the positioning groove PA21 due to improper operation which may damage the variable resistor PA100 or make the variable resistor PA100 inoperative.
As mentioned, the variable resistors nowadays rely on the two positioning grooves at the opposite sides of the sliding rod to support the hanged sliding rod, such that the sliding rods might be easily escaped from the positioning grooves to make the variable resistor inoperative due to the improper operation of the user.
Accordingly, it is an object of the present invention to provide a slide-type variable resistor, which has the brush base slidably assembled to the two side guiding tracks and uses two end locking parts to fix the two side guiding tracks in the shell.
As mentioned, a slide-type variable resistor is provided in accordance with an embodiment of the present invention. The slide-type variable resistor comprises a shell, two side guiding tracks, two end locking parts, a variable resistor circuit base, and a manipulating device. The shell has a position restriction hole extending along an operation direction and an allocation space linked to the position restriction hole formed therein. The two side guiding tracks are extending along the operation direction and symmetrically assembled in the allocation space. The two end locking parts are symmetrically assembled in the allocation space and utilized for pressing against the two side guiding tracks respectively to have the two side guiding tracks and the two end locking parts constrained in the allocation space. The variable resistor circuit base is assembled to the shell and utilized for pressing against the two end locking parts to have the two end locking parts and the two side guiding tracks fixed in the allocation space. The manipulating device comprises a brush base, at least a brush, and a bar. The brush base is slidably positioned in the two side guiding tracks. The brush is connected to the brush base and has elastic recovery to press against the variable resistor circuit base. The bar is connected to the brush base and extended outward from the position restriction hole.
As mentioned, by using the two end locking parts pressing against the two side guiding tracks and the variable resistor circuit base, the two side guiding tracks can be firmly positioned in the allocation space to have the sliding operation of the brush base more stable.
In accordance with an embodiment of the present invention, the shell comprises a top portion, two side portions, and two end portions. The top portion has the position restriction hole. The two side portions are integrally connected to two sides of the top portion. The two end portions are integrally connected to two ends of the top portion and contact the two side portion. The allocation space linked to the position restriction hole is defined by the top portion, the two side portions and the two end portions. As a preferred embodiment, the two end locking parts further press against the two end portions. In addition, each of the two side portion has at least a mounting structure, which is bended to lock the variable resistor circuit base.
The embodiments adopted in the present invention would be further discussed by using the flowing paragraph and the figures for a better understanding.
Please refer to
As shown, the slide-type variable resistor 100 includes a shell 1, two side guiding tracks 2, two end locking parts 3, a variable resistance circuit board 4, and a manipulating device 5.
The shell 1 includes a top portion 11, two side portions 12 (only one of them is labeled), and two end portions 13 (only one of them is labeled). The top portion 11 has a position restriction hole 111, which extends along an operation direction L.
The two side portions 12 are integrally connected to two sides of the top portion 11, and each of the two side portions 12 has three mounting structures 121 (only one of them is labeled). The two end portions 13 are integrally connected to two ends of the top portion 11 and contact the two side portions 12 such that an allocation space S encircled by the top portion 11, the two side portions 12 and the two end portions 13 is formed and the allocation space S is linked to the position restriction hole 111.
The two side guiding tracks 2 are extended along the operation direction L and symmetrically positioned in the allocation space S. Each of the side guiding tracks 2 has a sliding trench 21.
The two end locking parts 3 are symmetrically positioned in the allocation space S and press against the two side guiding tracks 2 and the two end portions 13 respectively so as to have the two side guiding tracks 2 and the two end locking parts 3 constrained in the allocation space S.
The variable resistor circuit base 4 is locked by bending the mounting structures 121 on the side portion 12 of the shell 1 so as to have the variable resistor circuit base 4 connected to the shell 1 and press against the two end locking parts 3 and the two side guiding tracks 2 within the allocation space S to have the two side fixing parts 3 and the two side guiding tracks 2 fixed in the allocation space S. In addition, the shell 1 may be fixed to the variable resistor circuit base 4 by the way other than bending the mounting structures provided in the present embodiment. For example, elastic locking units may be used to fix the shell on the variable resistor circuit base.
The manipulation device 5 includes a brush base 51, two symmetrically positioned brushes 52 (only one of them is shown in the figure), and a bar 53. The opposite sides of the brush base 51 are slidably positioned in the sliding trenches 21 of the two side guiding tracks 2. The brushes 52 are connected and fixed to the brush base 51 and with elasticity to press against the variable resistor circuit base 4. The bar 53 is connected to the brush base 51 and penetrates outward from the position restriction hole 111.
As mentioned, in accordance with the present invention, the two end locking parts press against the two side guiding tracks 2 and the two end portions 13, and the variable resistor circuit base 4 presses against the two side guiding tracks 2 and the two end locking parts 3 such that the two side guiding tracks 2 can be firmly positioned in the allocation space S.
When the user operates the manipulation device 5 to slide the brush base 51, because the two side guiding tracks 2 are closely positioned by the two side portions 12 respectively, and the two end locking parts 3 are also closely positioned by the two end portions 13 respectively, the fixing mechanism of the two side guiding tracks 2 and the two end locking parts 3 would be quite stable to withstand the improper operation.
In addition, the two side guiding tracks may be integrally connected to the two side portions of the shell respectively in accordance with another embodiment of the present invention. That is, the two side portions of the shell may be formed with the shape of the side guiding tracks corresponding to the sliding tracks of the brush base.
The detail description of the aforementioned preferred embodiments is for clarifying the feature and the spirit of the present invention. The present invention should not be limited by any of the exemplary embodiments described herein, but should be defined only in accordance with the following claims and their equivalents. Specifically, those skilled in the art should appreciate that they can readily use the disclosed conception and specific embodiments as a basis for designing or modifying other structures for carrying out the same purposes of the present invention without departing from the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103219328 | Oct 2014 | TW | national |