This application is the United States national phase of International Application No. PCT/CN2018/122215 filed Dec. 20, 2018, and claims priority to Chinese patent application filed on Aug. 13, 2018, with application number 201810913935.7, titled “SLIDE VALVE, SLIDE VALVE ADJUSTMENT MECHANISM AND SCREW COMPRESSOR”, the disclosures of which are hereby incorporated by reference in their entirety.
The present disclosure is related to a slide valve, a slide valve adjustment mechanism and a screw compressor.
The capacity adjustment of a screw compressor is usually completed by means of a capacity adjustment slide valve. Specifically, the slide valve is installed in a slide valve cavity of a screw compressor body, and the slide valve is located at the intersection of the two circles of a female rotor and a male rotor. The slide valve can slide back and forth along the axial direction of the compressor body. With the sliding of the slide valve, the slide valve is separated from the casing of the compressor, and some gases will be bypassed through an opening so as to achieve the purpose of capacity adjustment.
However, during the repeated movement of the slide valve, due to the influence caused by the compressed and exhausted air flow pulsation, there is a risk of scraping between the slide valve and the female rotor, the slide valve and the male rotor, and the slide valve and the slide valve cavity of the body. In order to avoid scraping, a structural design that enlarges the gap between the slide valve and the female rotor, the slide valve and the male rotor, and the slide valve and the slide valve cavity is usually used. As a result, this will also probably lead to a gas leak that reduces the energy efficiency of the compressor.
A slide valve in accordance with some embodiments comprises: a static slide valve and a moving slide valve, wherein the static slide valve is fixedly installed in a slide valve cavity, and the static slide valve is provided with an axially-penetrating valve hole; a plurality of bypass holes communicating with the valve hole are further formed in the sidewall of the static slide valve, and an exhaust port is further formed in the sidewall of one end of the static slide valve.
The moving slide valve comprises a valve body, and the valve body is slidably arranged in the valve hole; a limiting structure is provided between the static slide valve and the moving slide valve, and the limiting structure limits a limiting position for the sliding of the valve body towards the exhaust port along the valve hole; and the valve body opens all the bypass holes when moving towards the exhaust port to the limiting position, and the valve body sequentially closes all the bypass holes when moving towards a direction away from the exhaust port.
A slide valve adjustment mechanism in accordance with some embodiments comprises the above-mentioned slide valve and a piston assembly, wherein the valve body is connected to the piston assembly.
A screw compressor in accordance with some embodiments comprises a body provided with a slide valve cavity, wherein the screw compressor further comprises the above-mentioned slide valve adjustment mechanism, and the static slide valve is fixedly installed in the slide valve cavity.
In order to make the objectives, technical solutions, and advantages of the present disclosure clearer and more comprehensible, the slide valve, the slide valve adjustment mechanism and the screw compressor of the present disclosure will be further illustrated in detail below through embodiments and in conjunction with the accompanying drawings. It should be understood that the specific embodiments described herein are merely used to explain the present disclosure and are not intended to limit the present disclosure.
It should be noted that when one element is referred to as being “fixed to” another element, the element may be directly located on another element or an intervening element may also exist. When one element is considered to be “connected” to another element, the element may be directly connected to another element or an intervening element may exist simultaneously. In contrast, when one element is referred to as being “directly on” another element, there are no intermediate elements. The terms “perpendicular”, “horizontal”, “left”, “right”, and the like used herein are merely for the purpose of illustration.
As illustrated in
The moving slide valve 200 comprises a valve body 210, and the valve body 210 is slidably arranged in the valve hole 110; a limiting structure 300 is provided between the static slide valve 100 and the moving slide valve 200, and the limiting structure 300 limits a limiting position for the sliding of the valve body 210 towards the exhaust port 130 along the valve hole 110; and the valve body 210 opens all the bypass holes 120 while moving towards the exhaust port 130 to the limiting position, and the valve body 210 sequentially closes all the bypass holes 120 while moving towards a direction away from the exhaust port 130.
The static slide valve 100 is fixedly installed in the slide valve cavity of the compressor body 30, and the static slide valve 100 cooperates with a compressor rotor to play a sealing role, thus ensuring the sealing performance of the compressor. The moving slide valve 200 is a moving component, and the valve body 210 of the moving slide valve 200 can reciprocate in the valve hole 110 of the static slide valve 100, which can achieve the purpose of adjusting the capacity of the compressor. Since the static slide valve 100 does not move and the moving slide valve 200 is not in direct contact with the compressor rotor and the slide valve cavity, the problem of scraping between the slide valve 10 and the rotor and the slide valve cavity can be completely solved, and the reliability of the compressor can be improved. And when the slide valve 10 is designed to cooperate with the rotor and the slide valve cavity, the gap between the static slide valve 100 and the rotor, and the gap between the static slide valve 100 and the slide valve cavity can be controlled within a small range, thereby improving the sealing performance of the compressor and increasing the energy efficiency of the compressor.
In addition, the limiting structure 300 defines a limiting position for the sliding of the valve body 210 along the valve hole 110, that is, defines the distance of the sliding of the valve body 210 along the valve hole 110, which can ensure the positioning of the moving slide valve 200 and prevent the valve body 210 from sliding out of the valve hole 110. As illustrated in
The limiting structure 300 limits a limiting position for the sliding of the valve body 210 towards the exhaust port 130 along the valve hole 110. It can be understood that the limiting position refers to a position where the valve body 210 moves towards the exhaust port 130 to a position where it cannot continue to move towards the exhaust port 130. The valve body 210 opens all the bypass holes 120 while moving towards the exhaust port 130 to the limiting position, which is also the start position of the compressor at the minimum load.
As the compressor is loaded, the valve body 210 moves towards a direction away from the exhaust port 130, and the valve body 210 sequentially closes all the bypass holes 120.
As illustrated in
As illustrated in
As illustrated in
The limiting structure 300 can be in various structural forms. In some embodiments, the limiting structure 300 comprises a protrusion provided on the sidewall of the static slide valve 100, and the protrusion protrudes out of the hole wall of the valve hole 110 along the radial direction of the static slide valve 100, and the protrusion can abut against one end of the valve body 210 close to the exhaust port 130. The valve body 210 is limited by providing a protrusion on the static slide valve 100, whose structure is simple and easy to implement, and no additional spare parts are needed, which facilitates the simplification of the structure. It can be understood that, as illustrated in
Alternatively, in some embodiments, the limiting structure 300 may be a baffle ring provided on the moving slide valve 200, and the baffle ring is sleeved on one end of the moving slide valve 200 away from the exhaust port 130. The baffle ring can abut against one end of the static slide valve 100 away from the exhaust port 130 to define the moving distance of the valve body 210 towards the exhaust port 130. When the valve body 210 moves towards the exhaust port 130 to the limiting position, the baffle ring abuts against the end of the static slide valve 100 away from the exhaust port 130.
In some embodiments, the moving slide valve 200 further comprises a connection portion 220 connected to one end of the valve body 210 away from the exhaust port 130, and the connection portion 220 is connected to the piston assembly 20. It can be understood that the connection portion 220 may be of a rod-shaped structure, or of a plate-shaped structure, or the like. By providing the connection portion 220, the connection to the piston assembly 20 can be facilitated, and the movement of the valve body 210 can be guided, and the movement smoothness of the valve body 210 can be improved. In addition, as mentioned above, the stroke of the valve body 210 is limited by the limiting structure 300 and the structure of the piston assembly 20. The connection portion 220 is connected to one end of the valve body 210 away from the exhaust port 130. The connection portion 220 connects the valve body 210 and the piston assembly 20. During the reciprocating of the moving slide valve 200, part of the movement of the connection portion 220 is located within the stroke range of the valve hole 210. As a result, the axial volume of the compressor can be reduced, which is conducive to the miniaturization design of the compressor.
As illustrated in
It can be understood that the guide hole 140 is for the guide portion 230 to be provided in a penetrating manner, so as to guide the sliding of the valve body 210, and the cross-sectional shape of the guide hole 140 should be adapted to the cross-sectional shape of the guide portion 230. The guide hole 140 may be a circular hole, and the cross section of the guide portion 230 is circular.
In some embodiments, the limiting structure 300 is arranged at one end of the static slide valve 100 close to the exhaust port 130, and the guide hole 140 is provided in the limiting structure 300. In these embodiments, the guide hole 140 and the limiting structure 300 are integrated on the same structure of the static slide valve 100. For example, as illustrated in
In some embodiments, along the axial direction of the static slide valve 100, the sum of the length of the guide portion 230 and the length of the valve body 210 is greater than or equal to the sum of the length of the guide hole 140 and the length of the valve hole 110. Through such a design, it can be ensured that the end portion of the guide portion 230 can be flush with the end portion of the static slide valve 100 when the compressor is at a full load state. Alternatively, the end portion of the guide portion 230 can slightly protrude out of the end portion of the static slide valve 100. Therefore, it can be ensured that the guide portion 230 can always be in the guide hole 140 to guide the movement of the valve body 210.
As illustrated in
As illustrated in
Taking a twin-screw compressor as an example, the body 30 is provided with a slide valve cavity for the fixed installation of the static slide valve 100. The body 30 is also provided with a male rotor cavity and a female rotor cavity, and a male rotor is rotatably arranged in the male rotor cavity and a female rotor is rotatably arranged in the female rotor cavity. The static slide valve 100 is located at the intersection of the two circles of the female and male rotors. It can be understood that the static slide valve 100 respectively has a surface fitted with the slide valve cavity, a surface fitted with the male rotor, and a surface fitted the female rotor. In some embodiments, the plurality of bypass holes 120 in the static slide valve 100 are provided in the surface where the static slide valve 100 fits with at least one of the male rotor or the female rotor, as required. The shape and arrangement of the bypass holes 120 can be designed as required.
The static slide valve 100 can be fixedly installed in the slide valve cavity in various ways. For example, one end of a positioning key of the slide valve is inserted into the static slide valve 100 and the other end is inserted into the cavity wall of the slide valve cavity to fix the static slide valve 100 and to ensure that the static slide valve 100 cannot move in either the axial direction or the circumferential direction. After the static slide valve 100 is fixedly installed in the slide valve cavity, the moving slide valve 200 is installed in the valve hole 110 of the static slide valve 100, and the valve body 210 is connected to the piston assembly 20 to form a slide valve adjustment mechanism.
As illustrated in
During the entire capacity adjustment process, the static slide valve 100 does not perform action, thereby ensuring that the compressor can normally exhaust through the exhaust port 130 under any load without overcompression. At the same time, the problem of scraping between the screw rotor and the slide valve 10 and between the slide valve 10 and the slide valve cavity during the operation process of the compressor can be avoided, ensuring the operation reliability of the compressor. At the same time, the gap between the slide valve 10 and the parts cooperated therewith can be reduced, so that the leakage is reduced while the energy efficiency of the compressor is increased.
The technical features of the above-described examples may be combined arbitrarily. For simplicity in description, all the possible combinations of the technical features in the above-described examples are not described. However, as long as there is no contradiction among the combinations of these technical features, they shall all fall within the scope of the present disclosure.
The above-mentioned examples merely represent several examples of the present disclosure, giving specifics and details thereof, but should not be understood as limiting the scope of the present patent of disclosure thereby. It should be noted that a person of ordinary skill in the art could also make several alterations and improvements without departing from the spirit of the present disclosure and these would all fall within the scope of protection of the present disclosure. Therefore, the scope of protection of the present patent of disclosure shall be in accordance with the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201810913935.7 | Aug 2018 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/122215 | 12/20/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/034520 | 2/20/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4042310 | Schibbye | Aug 1977 | A |
8221104 | Wilson | Jul 2012 | B2 |
20170030356 | Yonemoto et al. | Feb 2017 | A1 |
20200291942 | Yang | Sep 2020 | A1 |
20210131434 | Broglia | May 2021 | A1 |
Number | Date | Country |
---|---|---|
203257684 | Oct 2013 | CN |
103470504 | Dec 2013 | CN |
103486037 | Jan 2014 | CN |
105805009 | Jul 2016 | CN |
106164490 | Nov 2016 | CN |
108661906 | Oct 2018 | CN |
208669597 | Mar 2019 | CN |
2011048618 | Apr 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20210270269 A1 | Sep 2021 | US |