An exhaust section of a typical gas turbine engine includes a removable liner secured relative to an exhaust duct. Positioning the liner within the exhaust duct insolates the exhaust duct from the thermal energy of flow through the exhaust. The engine's complex manufacturing tolerances and complicated flow path make securing the liner within the exhaust duct difficult. Thermal energy of flow through the exhaust also expands and contracts the secured liner. A robust liner securing strategy typically accommodates these thermal energy induced fluctuations. Liners in other sections of the engine face similar issues. Liners are often removed from the engine for repair, inspection, etc.
In one securing arrangement, brackets are associated with the exhaust liner and exhaust duct. The brackets each include corresponding apertures. A separate pin is inserted through the apertures, which are aligned during assembly, to support the exhaust liner relative to the exhaust duct. The separate pin typically extends along the entire axial length of the liner. Installing the lengthy, separate pin is difficult because of the distance the separate pin must travel to move between an uninstalled position and an installed position within the bracket apertures. More specifically, accessing areas of the engine that provide adequate clearances for manipulating the lengthy, separate pin during installation is often difficult. As an example, the curved inner wall of some curved exhausts blocks moving the pin to a position appropriate for insertion into the bracket apertures. Removing the pin from the bracket apertures is similarly difficult.
An example gas turbine engine includes an engine casing and an engine liner within the engine casing. One of the engine casing or the engine liner includes a first attachment structure. The other of the engine casing or the engine liner defines a track guide. A slideable member is moveable within the track guide between an engaged position and a disengaged position. The slideable member includes a second attachment structure engageable with the first attachment structure to secure the engine liner relative the engine casing when the slideable member is in the engaged position.
An example liner anchoring assembly includes a slideable member receivable within a track guide defined by an engine liner or an engine casing. The slideable member is moveable within the track guide between a first position and a second position, the slideable member in the second position is configured to limit more movement of the engine liner relative the engine casing than the slideable member in the first position. A pin structure or an apertured portion translates with the slideable member. The apertured portion receives the pin structure within an aperture when the slideable member is in the second position.
An example method of securing an engine liner includes positioning an engine liner within an engine casing in a first position, and sliding a liner anchoring structure relative the liner and the casing within a guide defined by the liner or the casing. The method includes sliding the liner anchoring structure to secure the liner in the first position during the sliding.
These and other features of the example disclosure can be best understood from the following specification and drawings, the following of which is a brief description:
In a two-spool design, the high pressure turbine 30 utilizes the extracted energy from the hot combustion gases to power the high pressure compressor 22 through a high speed shaft 38, and a low pressure turbine 34 utilizes the energy extracted from the hot combustion gases to power the low pressure compressor 18 and the fan section 14 through a low speed shaft 42. The example method may be applied to other architectures such as a single spool axial design, a three spool axial design, and other architectures.
Referring to the
Referring now to
The duct structure 78 defines a plurality of track guides 104 that each receives a track portion 108 of the respective liner anchoring assembly 100. In this example, the track guides 104 are defined along an interior portion of the duct structure 78 and are aligned with the engine axis A such that the liner anchoring assembly 100, when received within a respective one of the track guides 104, extends from the duct structure 78 toward the engine axis A. The example duct structure 78 defines several track guides 104 annularly arranged about the engine axis A.
The liner anchoring assembly 100, a type of slideable member, slides, translates, or otherwise moves within the track guides 104 between the disengaged position of
In the engaged position, a plurality of pins 112, mounted on pin stands 114 extending from the track portion 108, are received within a plurality of apertures 116 defined by corresponding brackets 120 extending from the liner structure 82. When received, the pins 112 fit within the apertures 116 to limit radial movement of the brackets 120 relative to the pins 112. The pins 112 and brackets 120 thus act as attachment structures securing the liner anchoring assembly 100 to the liner structure 82. Other example attachment structures include hooks or other features appropriate for engaging the brackets 120 relative to the liner anchoring assembly 100 to limit radial movement of the brackets 120.
The liner anchoring assembly 100 secures the liner structure 82 relative the duct structure 78 when the liner anchoring assembly 100 is in the engaged position. A plurality of liner supports 124 space the liner structure 82 from the duct structure 78 and facilitate aligning the apertures 116 with the pins 112 as the pins 112 move to the engaged position.
The pins 112 of the example liner anchoring assembly 100 are each shorter than the overall axial length of the liner structure 82. Pins 112 that are shorter require less movement of the liner anchoring assembly 100 to disengage form the apertures 116 than pins 112 that are longer. Disengaging the pins 112 thus requires less movement of the liner anchoring assembly 100 than if the pins 112 extended the entire length of the liner structure 82. Smaller movements of the liner anchoring assembly 100 require less clearance within the engine 50 than larger movements.
The pins 112 on the example liner anchoring assembly 100 are axially aligned with each other. This arrangement facilitates sliding the liner anchoring assembly 100 in a single direction to move the pins 112 to and from a position received within the apertures 116.
In the installed position of
Although shown as a liner anchoring assembly 100 moving within the track guides 104 defined by the duct structure 78, other examples may include track guides 104 defined by the liner structure 82. In such an example, the liner anchoring assembly 100 slides to engage apertured brackets (not shown) extending from the duct structure 78.
Referring to
Although a preferred embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4121768 | Young | Oct 1978 | A |
4458479 | Reider et al. | Jul 1984 | A |
5059055 | DeGress et al. | Oct 1991 | A |
5782294 | Froemming et al. | Jul 1998 | A |
6347508 | Smallwood et al. | Feb 2002 | B1 |
6672833 | MacLean et al. | Jan 2004 | B2 |
6895761 | Mitchell et al. | May 2005 | B2 |
6904757 | Mitchell et al. | Jun 2005 | B2 |
7017334 | Mayer et al. | Mar 2006 | B2 |
7237389 | Ryan et al. | Jul 2007 | B2 |
7338244 | Glessner et al. | Mar 2008 | B2 |
20040118127 | Mitchell et al. | Jun 2004 | A1 |
20050155352 | Agg | Jul 2005 | A1 |
20060101827 | Ryan et al. | May 2006 | A1 |
20070158527 | Farah et al. | Jul 2007 | A1 |
20080022689 | Farah et al. | Jan 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090301093 A1 | Dec 2009 | US |