G.A. Slack and S.B. Austerman, “Thermal Conductivity of BeO Single Crystals,” Journal of Applied Physics, vol. 42 [12] 4713-4717 (1971). |
W.P. Minnear and R.C. Bradt, “Stoichiometry Effect on the Fracture of TiO2-x” Journal of the American Ceramic Society, vol. 63 [9] 485-490 (1980). |
R. Stevens, “Engineering Properties of Zirconia,” Engineered Materials Handbook, vol. 4 775-776 (1991). |
M. Miyayama et al., “Engineering Properties of Single Oxides,” Engineered Materials Handbook, vol. 4 748 (1991). |
D.C. Harris et al., “Mechanical Strength of Hemispheric Domes of Yttria and Lanthana-Doped Yttria,” Journal of the American Ceramic Society, vol. 75 [5] 1247-1253 (1992). |
G.A. Slack and S.B. Austerman, “Thermal Conductivity of BeO Single Crystals,” Journal of Applied Physics, vol. 42 [12] 4713-4717 (1971). |
W.P. Minnear and R.C. Bradt, “Stoichiometry Effect on the Fracture of TiO2-x” Journal of the American Ceramic Society, vol. 63 [9] 485-490 (1980). |
K. Yasuda et al., “Influence of Grain Size and Temperature on Fracture Toughness of MgO Sintered Bodies,” Journal of the Ceramic Society of Japan Inter. Ed., vol. 98 44-49 (1990). |
R. Stevens, “Engineering Properties of Zirconia,” Engineered Materials Handbook, vol. 4 775-786 (1991). |
D.C. Harris et al., “Mechanical Strength of Hemispheric Domes of Yttria and Lanthana-Doped Yttria,” Journal of the American Ceramic Society, vol. 75 [5] 1247-1253 (1992). |
R.F. Cook et al., “Indentation Fracture of Polycrystalline Cubic Ceramics,” J. Hard. Mater., vol. 5 191-212 (1994). |
R.J. Gettings and G.D. Quinn, “Surface Crack in Flexure (SCF) Measurements of the Fracture Toughness of Advanced Ceramics,” Ceramic Engineering and Science Proceedings, vol. 16 539-547 (1995). |
J. Kubler, “Fracture Toughness of Ceramics using the SEVNB Method: Preliminary Results,” Ceramic Engineering and Science Proceedings, vol. 18 155-162 (1997). |
U.S. Appl. No. 09/884,796, filed Jun. 19, 2001, Boutaghou et al. |
H. Masumoto , ‘On the Thermal Expansion of the Alloys of Iron, Nickel, and cobalt and the Cause of the Small Expansibility of Alloys of the Invar Type’, Science Reports of the Tohoku Imperial University, vol. XX, 1931. |
H. Holleck, J. Vac. Sci. Technol., A 4(6) 2661 (1986). |
Wicaksana et al., J. Vac. Sci. Technol., A 10(4) 1479 (1992). |
Miyahara et al., J. Appl. Phys., 71(5) 2309 (1992). |
Lee et al., Phys. Rev., B 52(1) 253 (1995). |
Okimura et al., Jpn. J. Appl. Phys., 34 4950 (1995). |
Wiggins et al., J. Vac. Sci. Technol., A 14(3) 772 (1996). |
Yeh. et al., J. Appl. Phys., 79(10) 7809 (1996). |
Paterson et al., J. Mater. Res., 13(2) 388 (1998). |
Son et al., J. Vac. Sci. Technol., A 17(5) 2619 (1999). |
R.M Bozorth, Ferromagnetism, IEEE Press, 165-166 (1978). |
NIST, Material Scince and Engineering Laboratory Ceramics (visited Feb. 27, 2003) http://www.ceramics.nist.gov/srd/summary/ftgbeo.htm. |