The present disclosure relates to slider type portable terminals. More specifically, the present disclosure relates to slider mechanisms for slidably opening and closing portable terminal, such as portable communications terminals and electronic devices.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Recently, as portable wireless terminals have been increasingly popularized, users need additional functions to their tastes even in opening and closing operations of the terminal, along with its inherent functions of wireless communications.
In response to these needs, portable terminals have developed into a bar type, flip type, flip-up type, folder type, and the like. In recent years, the folder type has been used most widely. This is because the folder type terminal has a space sufficient enough to accommodate a wide LCD module as its display device and can be carried in a folded state to thereby provide a good portability, as compared with other types of terminals.
In more recent years, a slider type terminal has been introduced, which can be equipped with an LCD module display device having a similar size to the folder type. Simultaneously, the slider mechanism thereof can contribute to miniaturization of portable terminals.
This slider type terminal is structured such that a sub-body corresponding to a cover is slidably opened and closed on a main body, thereby providing additional advantages of slidably opening and closing, while maintaining the merits of the existing folder type terminal.
For example, Korean Utility Model Registration No. 0308165 discloses a slider-type portable wireless terminal. The terminal disclosed in the above application includes a guide means for guiding a slider body on a main body and at least one resilient means installed between the slider body and the main body such that its resilient force can be exerted in opening or closing direction with respect to a certain sliding point of the slider body. In addition, when the slider body is completely opened or closed, it can remain in its opened or closed state due to the resilient means, without any separate stopper. The resilient means employs a torsion spring, one end portion of which is fixed to the main body and the other end thereof is fixed to the slider body.
In this slider mechanism, the torsion spring must exert resiliency to the slider body over the whole range of traveling, and the torsion spring is to be compressed and restored repeatedly over a wide range of amplitude. Therefore, a torsion spring expandable over a wide length is used, but this torsion spring has a smaller resilient force. In order to compensate for the deficient resilient force, two torsion springs are employed.
But the torsion spring is compressed and restored in a wide range and thus easily aged due to fatigue caused by the repeated operations. Consequently, the torsion spring comes to lose its normal function or leads to an earlier failure.
In addition, this type of slider mechanism needs at least two torsion springs and further each torsion spring requires at least two windings, for the purpose of desired opening and closing operations. It should be noted here that the space between the main body and the slider body varies with the diameter of spring wire and the number of windings of the torsion spring. That is, as the wire diameter increases and/or the winding numbers increases, the spacing between the main body and the slider body is inevitably widened. For example, in case where the torsion spring has a wire diameter of 0.5 millimeters and two windings, the spacing between the main body and the slider body must be 1.0 millimeter at minimum. Consequently, the portable terminal becomes bulky and thus its portability becomes worse.
Furthermore, in case of this type of slider mechanism using a torsion spring, the elastic force varies with the angle of the torsion spring. Thus, it is not easy to control the sliding force formed between the main body and the slider body. That is, the portable terminal itself may receive impact and thus the service life thereof will be shortened if any separate impact absorber or the like is not provided.
According to various aspects, exemplary embodiments are provided of slider mechanisms for slidably opening and closing portable communications terminals. In one exemplary embodiment, a portable communications terminal includes a main body and a slider body sliding on the main body. The slider mechanism includes a first slider member fixed to one of the main body and slider body and a second slider member fixed to the other one. The second slider member is slidably engaged with the first slider member. A zigzag spring is disposed between the first and second slider members. One end portion of the zigzag spring is rotatably supported on one of the first and second slider members and the other end thereof is rotatably supported on the other one of the first and second slider members. The zigzag spring is formed of a first zigzag portion and a second zigzag portion having spring characteristics different from the first zigzag portion.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As disclosed herein, various exemplary embodiments provide slider mechanisms for slidably opening and closing portable communications terminals. In one exemplary embodiment, a portable communications terminal includes a main body and a slider body sliding on the main body. The slider mechanism includes a first slider member fixed to one of the main body and slider body and a second slider member fixed to the other one. The second slider member is slidably engaged with the first slider member. A zigzag spring is disposed between the first and second slider members. One end portion of the zigzag spring is rotatably supported on one of the first and second slider members and the other end thereof is rotatably supported on the other one of the first and second slider members. The zigzag spring is formed of a first zigzag portion and a second zigzag portion having spring characteristics different from the first zigzag portion.
Accordingly, exemplary embodiments of the present disclosure may be provided that solve one or more of the problems in the art. For example, exemplary embodiments may include a slider mechanism using a zigzag spring for slidably opening and closing a slider-type portable terminal, thereby enabling to minimize (or at least reduce) the thickness of the portable terminal while allowing for a smooth sliding operation. In one such exemplary embodiment, there is provided a slider mechanism for slidably opening and closing an electronic device. The electronic device includes a first body and a second body capable of sliding relative to or on the first body. In this example, the slider mechanism includes a first slider member capable of being fixed to the first body, and a second slider member capable of being fixed to the second body. The second slider member is slidably engaged with the first slider member. A zigzag spring is disposed between the first and second slider members. One end portion of the zigzag spring is rotatably supported on the first slider member and the other end thereof is rotatably supported on the second slider body. The zigzag spring is compressed and restored while the first and second slider members slide linearly against each other. The zigzag spring includes a first zigzag portion and a second zigzag portion having spring characteristics different from the first zigzag portion.
In an exemplary embodiment, the zigzag spring includes a pair of zigzag springs disposed so as not to interfere with each other.
In an exemplary embodiment, the first zigzag portion has a spring coefficient different from that of the second zigzag portion.
In an exemplary embodiment, the first zigzag portion has a zigzag pitch different from that of the second zigzag portion.
In an exemplary embodiment, the zigzag spring has an ‘M’-shape in general.
In an exemplary embodiment, the first zigzag portion has a cross-sectional shape different from that of the second zigzag portion.
In an exemplary embodiment, the zigzag spring has a circular, oval or rectangular cross-section.
In an exemplary embodiment, the electronic device includes a portable communications terminal.
In an exemplary embodiment, the first slider member is formed integrally with the first body of the electronic device, and the second slider member is formed integrally with the second body of the electronic device.
According to another aspect of the present disclosure, there is provided a slider mechanism for slidably opening and closing an electronic device. The electronic device has a first body and a second body linear-slidably combined with the first body. In an exemplary embodiment, the slider mechanism generally includes a zigzag spring disposed between the first and second bodies. One end portion of the zigzag spring is rotatably supported on the first body, and the other end portion of the zigzag spring is rotatably supported on the second body. The zigzag spring is compressed and restored while the first and second bodies slide linearly against each other. The zigzag spring includes a first zigzag portion and a second zigzag portion having a different spring characteristic from the first zigzag portion.
In an exemplary embodiment, the zigzag spring includes a pair of zigzag springs disposed so as not to interfere with each other.
In an exemplary embodiment, the zigzag spring has an ‘M’-shape in general.
In an exemplary embodiment, the first zigzag portion has a spring coefficient different from that of the second zigzag portion.
In an exemplary embodiment, the first zigzag portion has a zigzag pitch different from that of the second zigzag portion.
In an exemplary embodiment, the zigzag portion has a circular, oval or rectangular cross-section.
In an exemplary embodiment, the first zigzag portion has a cross-sectional shape different from that of the second zigzag portion.
In an exemplary embodiment, the electronic device includes a portable communications terminal.
According to a further aspect of the present disclosure, there is provided a portable communications terminal having a main body and a slider body. The slider body is slidably opened and closed with respect to the main body. The portable communications terminal also includes a first slider member fixed to the main body and a second slider member fixed to the slider body. The second slider member is linear-slidably engaged with the first slider member. A zigzag spring is disposed between the first and second slider members. One end portion of the zigzag spring is rotatably supported on the first slider member, and the other end portion of the zigzag spring is rotatably supported on the second slider member. The zigzag spring is compressed and restored while the first and second slider members slide linearly against each other. The zigzag spring includes a first zigzag portion and a second zigzag portion having spring characteristics different from the first zigzag portion.
In an exemplary embodiment, the zigzag spring includes a pair of zigzag springs disposed so as not to interfere with each other.
In an exemplary embodiment, the first zigzag portion has a spring coefficient different from that of the second zigzag portion.
In an exemplary embodiment, the first zigzag portion has a zigzag pitch different from that of the second zigzag portion.
In an exemplary embodiment, the zigzag spring has an ‘M’-shape in general.
In an exemplary embodiment, the zigzag spring has a circular, oval or rectangular cross-section.
In an exemplary embodiment, the first zigzag portion has a cross-sectional shape different from that of the second zigzag portion.
In an exemplary embodiment, the main body and the first slider member are formed integrally with each other, and the slider body and the second slider member are formed integrally with each other.
Other aspects of the present disclosure relate to methods associated with slider mechanisms for portable communications terminals and electronic devices. Further aspects relate to methods of opening and closing portable communications terminals having slider mechanisms.
With reference now to the figures,
Referring to
The terms “main body” and “slider body” used throughout the description and claims generally refer to and mean a stationary portion and a sliding portion of a portable terminal respectively when a user operates to open and close the terminal. But the user may also choose to move the main body relatively away from the slider body while holding the slider body stationary to accomplish the opening and closing of the terminal. Or the user may move both the main body and the slider body relative to each other to open and close the terminal. Accordingly, the particular manner and variations by which a user chooses to open and close the terminal should not be viewed as limitations to the scope of the present disclosure.
In a typical slider-type portable terminal, a keypad is mounted on the face of the main body, and a main board is housed inside of the main body to perform various functions. The slider body is equipped with a display screen, which as noted above may become visible through a window or opening 126 in the sliding plate 120 when the terminal is opened. The main body and the slider body are electrically connected with each other through a flexible PCB.
It should be understood to those skilled in the art that the “slider base 110” may become an integral part of the main body of a terminal, or separately formed and fixed to the main body. In addition, the “sliding plate” may become an integral part of the slider body of the terminal, or separately formed and fixed to the slider body.
The slider mechanism 100 of the exemplary embodiment shown in
One end portion of the first resilient member 142A is supported on the slider base 110. The other end portion of the first resilient member 142A is supported on the sliding plate 120. Similarly, one end portion of the second resilient member 142B is supported on the slider base 110. The other end portion of the second resilient member 142B is supported on the sliding plate 120. For helping achieve a smooth sliding operation and minimization (or at least reduction) of the mechanism thickness, as illustrated in
As illustrated in
In this exemplary embodiment, two resilient members are illustrated. But a single resilient member may be employed to provide for operations and effects corresponding to the illustrated two resilient members.
As shown in
In the illustrated examples, the first zigzag portion is placed in the center between two second zigzag portions, but not is limited thereto. The first and second zigzag portions may be placed in various different combinations, depending upon the applications thereof. For example, the zigzag spring may be formed of a single first zigzag portion and a single second zigzag portion.
Furthermore, the first and second zigzag springs 142A and 142B may be a circular, oval or rectangular cross-section, or other polygonal cross-sections. That is, the cross-section of the spring can be selected in various other ways to provide for various different resiliencies, for generating different elastic forces. For example, an oval cross-section can be applied to reduce the thickness of the slider mechanism while having the substantially same operational effects as in the circular cross-section illustrated in this embodiment.
As previously mentioned, the first and second zigzag portions in the zigzag spring have different spring characteristics. In order to provide for different spring characteristics, the first zigzag portion may have a different type of cross-section from that of the second zigzag portion in some embodiments. For example, the first zigzag portion may have a rectangular or oval cross-section, and the second zigzag portion may have a circular cross-section in some embodiments.
Referring to
Further, the inner side of the female guide 114A, 114B and the outer side of the male guide 124A, 124B may be reinforced with a plastic material, or the male and female guide themselves may be formed of a plastic material, thereby providing a further improvement in the durability of the slider mechanism 100. As a consequence, the service life of a portable terminal employing this slider mechanism can be further extended.
Referring to
When the slider base 110 is slightly beyond the transition point of
As described above, exemplary embodiments of the present disclosure include a slider mechanism (e.g., 100, etc.) that employ one or more zigzag springs (e.g., 142A, 142B, etc.) to enable a slim portable terminal. A zigzag spring used in an embodiment of the present disclosure may be formed of portions having different stress distributions and elastic characteristics, thereby allowing for a more effective and smoother sliding operation and thus extending the service life of portable terminals using the slider mechanism having one or more zigzag springs.
Certain terminology is used herein for purposes of reference only, and thus is not intended to be limiting. For example, terms such as “upper,” “lower,” “above,” “below,” “top,” “bottom,” “upward,” and “downward” refer to directions in the drawings to which reference is made. Terms such as “front,” “back,” “rear,” “bottom,” and “side,” describe the orientation of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import. Similarly, the terms “first,” “second,” and other such numerical terms referring to structures do not imply a sequence or order unless clearly indicated by the context.
When introducing elements or features and the exemplary embodiments, the articles “a,” “an,” “the” and “said” are intended to mean that there are one or more of such elements or features. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements or features other than those specifically noted. It is further to be understood that the method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
The description of the disclosure is merely exemplary in nature and, thus, variations that do not depart from the gist of the disclosure are intended to be within the scope of the disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 60/952,849 filed Jul. 30, 2007. The disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3955595 | Modes | May 1976 | A |
D260234 | Johnson, Jr. | Aug 1981 | S |
D280596 | Keeler | Sep 1985 | S |
4675948 | Bengtsson | Jun 1987 | A |
5715932 | Motoyama et al. | Feb 1998 | A |
D423916 | Kalat | May 2000 | S |
D438782 | Kalat | Mar 2001 | S |
6370362 | Hansen et al. | Apr 2002 | B1 |
D457931 | Kalat | May 2002 | S |
6773002 | Adoline et al. | Aug 2004 | B2 |
6822871 | Lee et al. | Nov 2004 | B2 |
7003104 | Lee | Feb 2006 | B2 |
7722281 | Naslund et al. | May 2010 | B2 |
20030153280 | Kopp et al. | Aug 2003 | A1 |
20050078817 | Lee | Apr 2005 | A1 |
20070091555 | Lee | Apr 2007 | A1 |
20080058039 | Lee et al. | Mar 2008 | A1 |
20080073196 | Chung | Mar 2008 | A1 |
20080146297 | Ho | Jun 2008 | A1 |
20090029749 | Lee | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
1961491 | May 2007 | CN |
101370040 | Feb 2009 | CN |
174555 | Dec 2008 | EP |
2020804 | Feb 2009 | EP |
61-24893 | Feb 1986 | JP |
61-58746 | Apr 1986 | JP |
02-500535 | Feb 1990 | JP |
08-145100 | Jun 1996 | JP |
10-190795 | Jul 1998 | JP |
2006-050204 | Feb 2006 | JP |
2008501288 | Jan 2008 | JP |
20-0308165 | Mar 2003 | KR |
319967 | Jul 2003 | KR |
345703 | Mar 2004 | KR |
20040044213 | May 2004 | KR |
20-0414034 | Apr 2006 | KR |
10-0627605 | Sep 2006 | KR |
WO8803617 | May 1988 | WO |
WO 03067776 | Aug 2003 | WO |
WO 2006031078 | Mar 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090035056 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
60952849 | Jul 2007 | US |