The present invention relates to a sliding assisting device for assisting a movable body such as a drawer and a lid to slide relative to a main body between a drawn-in position and a drawn-out position.
In a structure in which a movable body is switched to slide between a drawn-in position and a drawn-out position relative to a main body, when all the sliding operations to a drawn-in position and a drawn-out position are performed manually, it may cause fatigue and lack high quality. Accordingly, as disclosed in Patent Document 1, a movable body is urged to slide automatically in one direction toward the drawn-out position or the drawn-in position.
FIGS. 10(a) and 10(b) show a drawer apparatus disclosed-in Patent Document 1.
The spring member 65 accumulates a force in a process of sliding the movable body from the drawn-in position to the drawn-out position. One end of the spring member 65 is fixed on the main body, and the other end is fixed on the tilting part 60. The movable body is built into the main body in a state in which the drive pin 55 engages the slot 61.
When the movable body slides from the drawn-in position to the drawn-out position, the tilting part 60 moves along the straight part 51a of the guide track 51, and then is tilted forward at the bow-shaped part 51b. The drive pin 55 also moves from the slot 61 to a diagonal sidewall 62. Accordingly, the movable body is locked in the drawn-out position against the force of the spring member 65. When the movable body is pushed backward, the drive pin 55 returns from the diagonal wall part 62 to the slot 61, so that the movable body is drawn in with the force accumulated in the spring member 65. In Patent Document 1, the movable body slides to the drawn-in position with the force of the spring member 65, so that the movable body does not bounce back and is not drawn out again even when the movable body is strongly drawn in.
Patent Document 1: Japanese Patent Publication (Kokoku) No. 05-023763
In the conventional structure, the movable body slides automatically almost entirely from the drawn-out position to the drawn-in position. However, it is necessary to provide the strong pulling force to move the movable body from the drawn-in position to the drawn-out position, thereby deteriorating convenience. The drive pin 55 moves out from the slot 61 with a front slope of the tilting member 60 and engages the diagonal sidewall 62 as the lock mechanism for locking the movable body against the force of the spring member 65. Accordingly, it is difficult to strongly lock the movable body, thereby releasing the movable body by vibrations and the like.
When the movable body (drive pin 55) is draw out, an opening of the slot 61 provided in the tilting member 60 receives a large load accompanying the accumulation of the force of the spring member 65. Accordingly, it is desirable that the drive pin 55 enters deep in the opening. However, it is also necessary to easily release the drive pin 55 accompanying forward tilting of the tilting member 60, thereby limiting the opening. The conventional structure does not have an apparatus for assisting both operations of sliding the movable body toward the drawn-in position and toward the drawn-out position, thereby limiting the operation.
In view of the problems described above, a purpose of the present invention is to provide a sliding assisting device with a comparatively simple structure, thereby improving convenience and quality.
Further objects and advantages of the invention will be apparent from the following description of the invention.
According to a first aspect of the present invention, a sliding assisting device assists an operation of a movable body drawing out from a drawn-in position to a drawn-out position relative to a main body. The sliding assisting device comprises a drawing-out unit main body provided on one of the main body and the movable body. The drawing-out unit main body includes a slider capable of sliding in a same direction as the movable body; a lock member built into the slider and capable of moving in a direction roughly orthogonal to the sliding direction of the movable body; and a spring member capable of accumulating a force in a process of sliding the movable body in the direction from the drawn-out position to the drawn-in position. The sliding assisting device also comprises an operating member provided on the other of the main body and the movable body. When the movable body is drawn out to a mid-course position from the drawn-in position, the operating member shifts the lock member from a locked position for locking the movable body to the slider to an unlocked position for releasing the lock, so that the movable body can slides from the mid-course position to the drawn-out position with the force of the spring member.
According to a second aspect of the present invention, a sliding assisting device assists an operation of a movable body drawing in from a drawn-out position to a drawn-in position relative to a main body. The sliding assisting device comprises a drawing-in unit main body provided on one of the main body and the movable body. The drawing-out unit main body includes a slider capable of sliding in a same direction as the movable body; a lock member built into the slider and capable of moving in a direction roughly orthogonal to the sliding direction of the movable body; and a spring member capable of accumulating a force in a process of sliding the movable body in the direction from the drawn-in position to the drawn-out position. The sliding assisting device also comprises an operating member provided on the other of the main body and the movable body. When the movable body is drawn in to a mid-course position from the drawn-out position, the operating member shifts the lock member from a locked position for locking the movable body to the slider to an unlocked position for releasing the lock, so that the movable body can slides from the mid-course position to the drawn-in position with the force of the spring member.
According to a third aspect of the present invention, a sliding assisting device assists operations of a movable body drawing in from a drawn-out position to a drawn-in position and drawing out from the drawn-in position to the drawn-out position relative to a main body. The sliding assisting device comprises a drawing-in drawing-out unit main body provided on one of the main body and the movable body. The drawing-out unit main body includes a plurality of sliders capable of sliding in a same direction as the movable body; lock members built into the sliders; and a spring member connecting the sliders together and capable of accumulating a force in a process of sliding the movable body in directions from the drawn-in position to the drawn-out position and from the drawn-out position to the drawn-in position. The sliding assisting device also comprises an operating member provided on the other of the main body and the movable body. When the movable body is drawn in to a mid-course position from the drawn-out position or drawn out to the mid-course position from the drawn-in position, the operating member shifts the lock members from a locked position for locking the movable body to the sliders to an unlocked position for releasing the lock, so that the movable body can slides from the mid-course position to the drawn-in position and from the mid-course position to the drawn-out position with the force of the spring member.
In the structure of each of the aspects, one of the drawing-out unit main body, the drawing-in unit main body, and the drawing-out drawing-in unit main body is provided on one of the main body and the movable body. The operating member is provided on the other of the main body and the movable body for moving the lock member of the corresponding unit in the direction roughly orthogonal to the sliding direction of the movable body. Each of the unit main bodies includes the slider, the lock member, and the spring member, and is combined with the operating member.
In an operation of each of the aspects, the spring member accumulates a force in a process of sliding the movable body, so that the movable body slides automatically with the accumulated force. The lock member of each unit main body receives a load from the operating member, so that the lock member switches between the locked position for locking the movable body to the slider (so that the slider does not slide alone) and the unlocked position releasing the lock (the slider slides). As an additional advantage, it is possible to make a shape of the lock member same as that of the operating member, thereby reducing manufacturing cost through shearing the main components.
In the invention described above, the operating member may have a first cam part capable of displacing the lock member to the locked position and a second cam part capable of displacing the lock member to the unlocked position. Each unit main body may have a damper provided inside a case retaining the slider, the lock member, and the spring member for damping a sliding speed of the movable body through the slider. The damper may have plural projections on an outer perimeter of a damper main body, so that the damper can rotate one direction through the projections relative to a damper receiving part provided in the case in. The damper may have a gear engaging a rack provided on the slider.
In the present invention, the sliding assisting device has the following advantages. In the first aspect, with the drawing-out unit main body and the operating member, it is possible to slide the movable body automatically in the process of switching from the drawn-in position to the drawn-out position, that is, from the mid-course position to the drawn-out position, with the force of the spring member, thereby improving convenience.
In the second aspect, with the drawing-in unit main body and the operating member, it is possible to slide the movable body automatically in the process of switching from the drawn-out position to the drawn-in position, that is, from the mid-course position to the final drawn-in position, with the force of the spring member, thereby improving convenience.
In the third aspect, with the drawing-out/drawing-in unit main body and the operating member, it is possible to slide the movable body automatically in the process of switching from the drawn-in position to the drawn-out position, and in the process of switching from the drawn-out position to the drawn-in position, that is, from the mid-course position to the final drawn-out position and the final drawn-in position, with the force of the spring member, thereby improving convenience. In particular, it is possible to assist drawing in and drawing out by the single unit construction, thereby obtaining excellent assemble and maintenance characteristics, and eliminating constraint of a setup space.
In the fourth aspect, the lock member of each unit main body is displaced to the locked position or the unlocked position while abutting against the first cam part or the second cam part of the operating member. Accordingly, it is possible to arbitrarily adjust a depth for locking the lock member in the locked position, thereby obtaining stable lock strength.
In the fifth aspect, the movable body is damped by the damper, so that the movable member does not slide rapidly by the force of the spring, thereby improving quality.
In the sixth aspect, the main body of the damper rotates in one direction relative to the damper receiving part with the projections on the outer perimeter and steps on the receiving part. Accordingly, it is possible to provide a function as a so-called one-way type in which a movement only in a predetermined rotational direction is damped by just setting shapes of the outer perimeter of the main body.
In the seventh aspect, the damper has the gear for engaging the rack on the slider, thereby obtaining stable damping.
FIGS. 2(a) to 2(d) are schematic views showing an operation of the sliding assisting device shown in
FIGS. 3(a) to 3(d) are schematic views corresponding to FIGS. 2(a) to 2(d) showing an operation of a modified example of the sliding assisting device shown in
FIGS. 5(a) to 5(d) are schematic views showing an operation of the sliding assisting device shown in
FIGS. 7(a) to 7(d) are schematic views showing an operation of the sliding assisting device shown in
FIGS. 8(a) to 8(d) are schematic views similar to FIGS. 7(a) to 7(d) showing the operation of the sliding assisting device shown in
FIGS. 10(a) and 10(b) are schematic views for explaining problems of a conventional device.
Hereunder, embodiments of the present invention will be explained while referring to the accompanying drawings.
The sliding assisting device of the present invention is constituted by one of a drawing-out unit main body 1A, a drawing-in unit main body 1B, and a drawing-out/drawing-in unit main body 1C, and an operating member 5. The sliding assisting device assists the operation of switching to slide the movable body to the drawn-in position and the drawn-out position.
In this example, one of the drawing-out unit main body 1A, the drawing-in unit main body 1B, and the drawing-out/drawing-in unit main body 1C is placed on the movable body 8, and the operating member 5 is placed on each space part 7 in correspondence with said unit main body. Regarding the placement of the members, as shown in the modified example in FIGS. 3(a) to 3(d), one of the drawing-out unit main body 1A, the drawing-in unit main body 1B, and the drawing-out/drawing-in unit main body 1C may be placed on the space part 7 (main body 6), and the operating member 5 may be placed on the movable body 8.
In the sliding assisting device in
The case 10A has a rectangular container shape elongated in the sliding direction of the movable body 8 and is flat as shown in
A damper 35 is placed inside the dividing rib 13. That is, the dividing rib 13 forms a damper receiving part, and one part becomes a step part. The damper receiving part is made such that a main body 36 of the damper 35 to be described later is rotated only in one direction via teeth or projections on the side of the main body and the step part on the side of the rib 13. In terms of shape, in addition to the shape in
The damper 35 has a main body 36 which has plural teeth or projections formed on the outer perimeter and is filled with operating oil, and a gear 37 which is supported to rotate freely via a shaft, or the like, on the main body 36 and is subject to resistance of the operating oil. The damper 35 idle-rotates when it rotates clockwise as in
In this structure, the damper 35 is placed inside the dividing rib 13, that is, the damper receiving part, so that the main body 36 is idle-rotated in one direction via the teeth or projections on the outer perimeter, and it damps only when the movable body 8 is slid by the force of the spring member 4 to be described later. That is, the damping structure does not apply damping action when the main body 36 rotates, but it becomes in a state capable of damping via the gear 37 when in the state having become incapable of rotation.
The slider 2 is constituted by a long and thin long piece part 20, a front-end bent part 21 where the front end of the long piece part 20 is bent roughly in an L shape, and a holding part 22 which is provided at the back end of the long piece part 20. On the long piece part 20, a rack 24 is provided along one side for engaging the gear 37. The holding part 22 is formed roughly in a recessed shape in section. On the opposite pieces of the recessed shape, an inner part 22b is formed one step shorter than an outer part 22a, and also a small opening or hole 23 is provided in the piece linking the opposite pieces together. A total size of the slider 2 is a length which extends from the front side (left side in
The lock member 3 is formed roughly in a shaft or pin shape, and it is constituted by elastic pieces 30 which are placed 1o protruding on both sides of the shaft part, a striking part 31 on the lower end, and a head part 32 on the upper end. The striking part 31 is formed roughly in a trapezoidal shape, and both sides are formed as sloping sides. Also, the lock member 3 is placed in a state in which it elastically contacts the inner part 22b of the holding part 22 via the two elastic pieces 30, and the striking part 31 is made to project out from the hole 23.
Accordingly, the lock member 3 is placed on the holding part 22 in a direction orthogonal to (same as intersecting) the sliding direction of the slider 2, and it becomes capable of moving accompanying the elastic deformation of the two elastic pieces 30. Usually, the lock member 3 is placed in the locked position with the head part 32 between the vertical rib 12b and the straight rib 12c, that is, with the head part 32 restricted by the vertical rib 12b, as in
The spring member 4 is a constant-pressure spring in which a spring plate 42 wound around a spool 41 is drawn out from a housing 40, and it is attached inside the case 10A between the base end side of the straight rib 12a and the corresponding case sidewall. Also, the spring member 4 forces the slider 2 to the back of the case by having the drawn-out end of the spring plate 42 fixed to the front-end bent part 21 of the slider 2. In the assembled state, the slider 2 is kept in the initial position in
The operating member 5 is formed roughly in an L shape, and it is constituted by a long piece part 45 which is placed in the sliding direction of the slider 2, and a short piece part 46 which is placed in a direction intersecting the sliding direction of the slider 2. The long piece part 45 has a first cam part 47 which is provided on the end part and protrudes upward. The first cam part 47 enables switching of the lock member 3 from the unlocked position to the locked position as in
(Operation)
FIGS. 2(a) to 2(d) show the operation when using the sliding assisting device of the first embodiment. That is:
FIGS. 3(a) to 3(d) show a modified example of the first embodiment in which the above drawing-out unit main body 1A is placed on the main body 6 (inside bottom surface of the space part 7) and the operating member 5 is placed on the movable body 8. In this modified example, as is clear from comparison with FIGS. 2(a) to 2(d), the relationship of the members is inverted. However, the operation, although the explanation is omitted, is substantially the same as in the first embodiment as is clear from comparison between FIGS. 2(a) to 2(d) and FIGS. 3(a) to 3 (d).
In the sliding assisting device in
The case 10B has a rectangular container shape which is long in the sliding direction of the movable body 8 and is flat as in
A damper 35 is placed in the place partitioned by the arc wall 14b and the arc rib 15. That is, the arc wall 14b and the arc rib 15 form a damper receiving part, and a part becomes a step part. In the damper receiving part, the damper 35 is placed to be capable of rotating in one direction just as in the first embodiment. In terms of shape, in addition to the shape in
The damper 35 has a main body 36 and a gear 37 just as in the first embodiment. The damper 35 idle-rotates when it rotates counterclockwise as in
The slider 2 is constituted by a long and thin long piece part 20, and a holding part 22 which is provided at the back end of the long piece part 20. On the long piece part 20, a rack 24 for engaging with said gear 37 is, provided along one side. The holding part 22 is formed roughly in a recessed shape in section. On the opposite pieces of that recessed shape, an inner part 22b is formed one step shorter than an outer part 22a, and also a hole 23 is provided in the piece linking the opposite pieces together. A total size of the slider 2 has a length which extends from the front side (left side in
The lock member 3 is the same as that in the first embodiment, and it is placed in a state in which it elastically contacts the inner part 22b of the holding part 22 via the two elastic pieces 30 and the striking part 31 is made to project out from the hole 23. Accordingly, the lock member 3 is placed on the holding part 22 in a direction orthogonal to (intersecting) the sliding direction of the slider 2, and is capable of moving accompanying the elastic deformation of the two elastic pieces 30. Usually, the lock member 3 is placed in the unlocked position with the head part 32 lightly contacting the inner surface of the other side in the lengthwise direction of the case as in
The spring member 4 is a constant-pressure spring in which a spring plate 42 wound around a spool 41 is drawn out from a housing 40, and is attached inside the case 10B on the front side. The spring member 4 has the drawn-out end of the spring plate 42 fixed by a suitable method to the holding part 22 of the slider 2. In the assembled state, the slider 2 is kept in the initial position in
The operating member 5 is substantially the same as that in the first embodiment. The first cam part 47 enables switching of the lock member 3 from the unlocked position to the locked position as in
(Operation)
FIGS. 5(a) to 5(d) show the operation when using the sliding assisting device of the second embodiment. That is:
In the sliding assisting device of the second embodiment, just as with the modified example of the first embodiment, the drawing-in unit main body 1B may be placed on the main body 6 (for example, the inside bottom surface of the space part 7), and the operating member 5 may be placed on the movable body 8. In that modified example, the relationship of the members becomes a relationship as if viewed from the back of the paper surface of FIGS. 5(a) to 5(d). Also, operationally it is the same as the second embodiment.
In the sliding assisting device in
The case 10C has a rectangular container shape which is long in the sliding direction of the movable body 8 and is flat as in
A damper 35 is placed inside the dividing rib 17. The dividing rib 17 forms a damper receiving part, and one part becomes a step part. The damper receiving part functions in the same manner as in the first embodiment, and the main body 36 of the damper 35 is made capable of rotating only in one direction via teeth or projections on the main body side and the step part on the side of the rib 17. In terms of shape, it is not limited to the shape in
The damper 35 is the same as that in the each of the embodiments above. The damper 35 idle-rotates when it rotates counterclockwise as in
Each slider 2, just as in the first and second embodiments, has a long piece part 20 forming a rack 24, and a holding part 22 which is provided at the back end of the long piece part 20 and supports the lock member 3. On one slider 2 (the slider 2 placed on the lower side in
The lock member 3 is the same as that in the first embodiment, and it is placed in a state in which it elastically contacts with the inner part 22b of the holding part 22 via the two elastic pieces 30, and the striking part 31 is made to project out from the hole 23. Accordingly, the lock member 3 is placed on the holding part 22 in a direction orthogonal to the sliding direction of the slider 2, and becomes capable of moving accompanying the elastic deformation of the two elastic pieces 30. Usually, the lock member 3 of one slider 2 is placed in the unlocked position with its head part 32 lightly contacting with the side surface of the front-to-back rib 18b, and the lock member 3 of the other slider 2 is placed with its head part 32 on the step-shaped restricting part 19a of the front-to-back rib 18a, that is, in the locked position (position in which the movable body and the corresponding slider are operationally linked), as in
The spring member 4 is a constant-pressure spring in which a spring plate 42 wound around a spool 41 is drawn out from a housing 40, and is attached to the step-shaped attachment piece part 27 of the other slider 2. The spring member 4 has the drawn-out end of the spring plate 42 fixed to the fixing part 25 provided on the holding part 22 of the one slider 2.
The operating member 5 is the same as that in the first and second embodiments, and the number used is the same number as that of the sliders 2 or lock members 3, that is, two. Also, each operating member 5 by the first cam part 47 enables switching of the corresponding lock member 3 from the unlocked position (position in which the operational link between the movable body and the corresponding slider is released) to the locked position as in each of
(Operation)
FIGS. 7(a) to 7(d) and 8(a) to 8(d) show the main operations when using the sliding assisting device of the third embodiment.
In the third embodiment, just as with the modified example of the first embodiment, the drawing-out/drawing-in unit main body 1C may be placed on the main body 6 (for example, the inside bottom surface of the space part 7), and the operating member 5 may be placed on the movable body 8. In that modified example, the relationship of the members in FIGS. 7(a) to 7(d) becomes a relationship as if viewed from the back of the paper surface of the same drawing. Operationally, it is the same as the third embodiment. In order to achieve both drawing out and drawing in as above, it also can be considered to provide both the drawing-out unit main body 1A of the first embodiment and the drawing-in unit main body 1B of the second embodiment as a group. When it is the constitution of the third embodiment and its modified example, for example, there is an advantage of being simplified in that it is sufficient to have just one damper 35 and spring member 4.
The present invention is not to be restricted to the above embodiments and modified examples, and other than the essential conditions, it is capable of being modified suitably. Also, the sliding assisting device of the present invention has no particular constraint in terms of use. For example, if the movable body is a lid, the drawn-in position becomes the same meaning as the closed position which it is placed on a prescribed place of the main body, and the drawn-out position becomes the same meaning as the open position in which it is removed from the prescribed place of the main body. As for the damper 35, simplification is devised by making it as a constitution in which it damps only when rotating in one direction, and restricting the rotational direction by setting of the shape of the main body 36 on the damper receiving part, but there is no problem even if it is other than this type. For the spring member 4, although an example of a constant-pressure spring was given, it also may be a coil-spring or other forcing structure.
The disclosure of Japanese Patent Application No. 2004-099687, filed on Mar. 30, 2004, is incorporated in the application.
While the invention has been explained with reference to the specific embodiments of the invention, the explanation is illustrative and the invention is limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-099687 | Mar 2004 | JP | national |