One known mechanism to lock a door uses a bolt slidably mounted on the door. This mechanism 10 is described with respect to
To unlock the door, the pin 16 is rotated ninety degrees in the direction of the arrow as shown in
Although the mechanism 10 has proven effective for many uses, situations arise where such mechanism 10 does not perform as well as desired. For example, the conventional mechanism 10 is not as effective for locking a half door (sometimes called a “Dutch door”) of a stable for horses, because the horses often succeed at opening doors by extending their heads outside their chambers and then lowering their heads to engage the locks with their mouths. The horses are able to rotate the bolts and then slide them to unlock the doors. Another disadvantage of the locking mechanism 10 is that it opens by itself sometimes in the environment of ambient vibrations, for example, if the locking mechanism 10 is mounted on a machine or if it is close to a machine.
Illustrated in
An advantage of the locking mechanism 20 over the locking mechanism 10 is that the spring 36 biases the end segment 30 of the bolt 24 against the brace 26, which makes ambient vibrations much less likely to cause the mechanism 20 to unlock. Another advantage is that a user, perhaps with his/her hands full when wanting to open the door, needs only to rotate the bolt 24 and to let the spring 36 cause the mechanism 20 to transition to unlock.
However, while the spring 36 causes the locking mechanism 20 to have the advantages discussed above, it also has the disadvantage of making it much easier for livestock to unlock the mechanism 20. Just as a human with his/her hands full can unlock the mechanism 20 more easily, the animal need only grasp the pin 28 and rotate it approximately ninety degrees to escape from its confinement.
Accordingly, the present inventor decided to improve the conventional mechanisms 10 and 20 of
Embodiments of the present invention are convenient as in the prior art. A user may open and close a door with only one hand, but the embodiments are more reliable for locking doors for multiple reasons. As detailed below, both rotational and translational movements of the bolt against a biasing force make opening doors much more difficult for livestock. Also, biasing the bolt into the locking state makes embodiments of the invention less likely to fail in the presence of ambient vibrations.
The invention may be embodied as a sliding bolt latch. The sliding bolt latch includes: a slidable and rotatable bolt having an axis; a spring biasing the bolt in the direction of the bolt axis; a projection extending from the bolt; and a base having a barrier that limits sliding and rotating movement of the projection.
The invention may also be embodied as a sliding bolt latch assembly. The sliding bolt latch assembly include: a sliding bolt latch as discussed in the previous paragraph; and a brace for constraining translational movement of the bolt to its axis when the bolt is in one region of axial positions and for allowing translational movement of the bolt in addition to axial movement when the bolt is in another region of axial positions.
The invention may further be embodied as a method of unlocking a latch assembly having a bolt and a spring biasing the bolt to an axial position in which the bolt cannot rotate. The method includes: forcing the bolt to move axially against the spring biasing; rotating the bolt; and permitting the bolt to move axially in the direction of the spring biasing.
Embodiments of the present invention are described in detail below with reference to the accompanying drawings, which are briefly described as follows:
The invention is described below in the appended claims, which are read in view of the accompanying description including the following drawings, wherein:
The invention summarized above and defined by the claims below will be better understood by referring to the present detailed description of embodiments of the invention. This description is not intended to limit the scope of claims but instead to provide examples of the invention.
As disclosed herein, the present sliding bolt latch maintains doors, window, etc. in a closed position better than done by the prior art discussed in the preceding section. As a result, livestock is not able to open doors locked with this latch so easily, and ambient vibrations are not likely to cause the latch to transition to the open position.
A first exemplary embodiment of the invention is illustrated in
As shown, the sliding bolt latch 40 includes a bolt 44 and a base 46. The bolt 44 is slidable in that it can slide in the direction of its axis 48. The bolt 44 is also rotatable about that axis 48. A coil spring 50 surrounding the bolt 44 biases the bolt 44 along the bolt axis 48 toward the right in
The brace 42 of the sliding bolt latch assembly 38 is intended for placement at one end of the sliding bolt latch 40 (the left end in
The base 46 in this embodiment has two holes 60 forming two integral bolt guides 62 through which the bolt 44 slides and is free to rotate. As with the bolt guide 58 of the brace 42, the bolt guides 62 of the base 46 allow rotational movement of the bolt 44 and constrain translational movement of the bolt 44 to sliding in the direction of the axis 48.
Underneath the bolt 44, the base 46 has a barrier 64 that limits sliding and rotating movements of the projection 52. In the present embodiment, the barrier 64 compromises a shorter straight portion 66, a curved portion 68, and a longer straight portion 70 joined in the stated order to resemble a rod bent into a “J” shape. With such a shape of the barrier 64, the bolt 44 is free to slide axially between a region in which the barrier 64 prevents rotation of the bolt 44 in the both directions and a region in which the barrier 64 prevents rotation of the bolt 44 in only one direction. The reason for this shape is apparent when a method of the using the sliding bolt latch 40 is discussed below with reference to
The barrier 64′ is useful with a sliding bolt latch that is formed so that the projection extending from the bolt can be removed and then reinstalled onto the bolt 180 degrees around the bolt axis from its original position so the sliding bolt latch assembly may be used on door that swings open in the opposite direction. One way to facilitate easy removal and reinstallation of the projection is to build the bolt and projection so that the two elements separate and rejoin by screwing the projection out of/into the bolt. The “U” shape of the barrier 64′ makes is more suitable for a sliding bolt latch that may be used for doors swinging open in either direction, because a longer straight segment portion of a “J” shape barrier does not allow bolt rotation in one of the two directions. A reason to change the position of the projection is to be able to install the sliding bolt latch so that the handle of the bolt stays pointing down due to gravity when a user is not momentarily rotating the bolt to lock or to unlock the door. Thus, the bolt handle is less likely to snag people, livestock, etc. passing near the door.
The present embodiment may also be embodied as a method of using a sliding bolt latch assembly. Such embodiment is described with reference to
In
To transition the sliding bolt latch assembly 38 to the “unlocked” position, the bolt 44 is forced against the biasing force of the spring 50 along the bolt axis toward the brace 42. This force may be applied by the user pushing the handle 54. As illustrated in
As shown in
The user then allows the bolt 44 to slide back in the direction of the spring biasing force, as shown by the arrow in
The handle 54 may be rotated to the position illustrated in
If the present method is executed upon a sliding bolt latch assembly that has a barrier such as the barrier 64′ in
Another exemplary embodiment of the invention, also a sliding bolt latch assembly, is illustrated in
As with the first embodiment, the sliding bolt latch 72 of this embodiment includes a bolt 74, a base 76, a spring 78, two bolt guides 80, and a barrier 82. Unlike the first embodiment, though, the sliding bolt latch 72 has a single element 84 that is both the handle and the projection that the barrier 82 limits the movement thereof.
The method of the using the sliding bolt latch 72 of this embodiment is discussed with reference to
In
To transition the sliding bolt latch 72 to the “unlocked” position, the bolt 74 is forced against the biasing force of the spring 78 along the bolt axis toward the brace. As illustrated in
As shown in
The user allows the bolt 74 to slide back in the direction of the spring biasing force as shown in
The handle 84 may be rotated to the position illustrated in
Still another exemplary embodiment of the invention is a method of unlocking a latch assembly, and the method is described with reference to the flowchart in
The method begins by forcing the bolt to move axially against the spring biasing. (Step 1.) For latch assemblies manufactured with strong spring biasing, if a handle is formed integral with the bolt, a user of the latch assembly may find it helpful to position the heel of his/her hand on the handle and position his/her fingertips on a base of the latch assembly to move the bolt by a squeezing motion of the hand. Alternatively, the user may want to grasp the handle and lean against the biasing force.
As discussed above, the bolt initially cannot rotate. However, the present latch assemblies allow bolt rotation after the bolt moves a sufficient distance axially against the spring biasing. Accordingly, the next step of the present method is to rotate the bolt. (Step 2.) If the user of user of the latch assembly discontinued forcing the bolt axially against the spring biasing without rotating the bolt, the bolt would return to its original position and the latch assembly would remain locked.
The bolts of the latch assemblies upon which the present method is practiced are initially constrained from moving axially with the spring biasing pass a certain point, due to the positioning of a barrier of some sort. However, after the bolt rotation of Step 2, the barrier no longer constrains this axial motion. Accordingly, the next step of the present method is to permit the bolt to move axially in the direction of the spring biasing (Step 3), and spring moves the bolt further axially than its original position. Eventually, the bolt is no longer surrounded by a bolt guide of a brace of the latch assembly, and the latch assembly is now unlocked. The method is concluded.
Accordingly, embodiments of the invention are convenient as in the prior art, as a user may open and close a door with only one hand. However, the embodiments are more reliable for locking doors, because of multiple factors. For example, the spring biasing the bolt into locking state makes the sliding bolt latch assembly less likely to fail in the presence of ambient vibrations. Also, the requirement for both rotational and translational movements of the bolt against a biasing force make opening the sliding bolt latch assembly much more difficult for livestock to maneuver the components of the sliding bolt latch assembly. It may be desired to use a strong spring so that one-handed opening requires squeezing while the heel of the hand is positioned on the handle and the fingertips are on the base. In any case, the spring improves the reliability of the sliding bolt latch assembly by returning the bolt to the locked position, if the proper sequence of translational and rotational movements to unlock the sliding bolt latch assembly is not completed.
Having thus described exemplary embodiments of the invention, it will be apparent that various alterations, modifications, and improvements will readily occur to those skilled in the art. Alternations, modifications, and improvements of the disclosed invention, though not expressly described above, are nonetheless intended and implied to be within spirit and scope of the invention. For example, instead of a coil spring surrounding the bolt and biasing it in one direction as in embodiments described above, other types of biasing mechanisms are implemented. As another example, embodiments of the invention are made also with a spring biasing the bolt rotationally, such as to position the handle in a particular direction without relying on gravity. Accordingly, the foregoing discussion is intended to be illustrative only; the invention is limited and defined only by the following claims and equivalents thereto.
This application claims benefit under 35 U.S.C. § 119(e) of the Jan. 18, 2015 filing of U.S. Provisional Application No. 62/104,770, which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2016/050232 | 1/18/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/113722 | 7/21/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
266601 | Blayney | Oct 1882 | A |
1315266 | Weiland | Sep 1919 | A |
1333974 | Gordon | Mar 1920 | A |
1602264 | Hutchison | Oct 1926 | A |
1675033 | Lefkovitz et al. | Jun 1928 | A |
2253496 | Cordrey et al. | Aug 1941 | A |
2714814 | Shaffer | Aug 1955 | A |
2845789 | Kistner | Aug 1958 | A |
3958820 | Teeple | May 1976 | A |
4580824 | Asp | Apr 1986 | A |
5032045 | Calco | Jul 1991 | A |
5618066 | Fu-Hsiang | Apr 1997 | A |
5746455 | Takimoto | May 1998 | A |
8250811 | Zijlstra | Aug 2012 | B2 |
20060186673 | Wong | Aug 2006 | A1 |
20140175811 | Fu | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
2063555 | Oct 1990 | CN |
202882559 | Apr 2013 | CN |
183594 | Jul 1922 | GB |
2328473 | Feb 1999 | GB |
WO 2004031518 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20170356222 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62104770 | Jan 2015 | US |