The invention relates to a sliding cam system, having at least one sliding cam, which is arranged in a manner which prevents relative rotation but allows axial shifting on at least one axially fixed base shaft of a reciprocating-piston internal combustion engine in order to form a camshaft, having at least one actuating device for adjusting the sliding cam into different axial positions by at least one actuating pin that can be made to engage in at least one shifting groove on the periphery of the sliding cam, wherein the actuating device has a housing fixed to the engine and the shifting groove is machined into a top circle surface of the sliding cam down to a groove bottom and is of helical design and has an entry region, a shifting region having an accelerating flank and a braking flank, and an exit region for the actuating pin.
A sliding cam system of this kind, corresponding to the preamble, is known from DE 10 2009 009 080 A1. Two shifting grooves are arranged in series on the top circle surface of the sliding cams of this system, said grooves having cam tracks extending axially in opposite directions on the periphery of the top circle surface and being designed as double S grooves. Under unfavorable operating conditions, e.g. at a high switching speed and a low temperature, the exit speed of the respective actuating pin from the housing can be too low to engage correctly in the respective shifting groove. This can lead to incorrect switching, incorrect positioning and partial overlaps.
It is the object of the invention to improve a sliding cam system of the type corresponding to the introduction in such a way that the disadvantages mentioned are eliminated. The intention is to ensure that incorrect switching, incorrect positioning and partial overlaps do not occur and that reliable and precise shifting of the sliding cam takes place under all operating conditions.
According to the invention, this object is achieved by virtue of the fact that the shifting groove is assigned an extended engagement region and that the extended engagement region at least partially has a material removal from the level of the top circle or top circle surface in the direction of the groove bottom. The extension of the engagement region essentially follows the entry region, counter to the direction of rotation of the sliding cam. This ensures that the actuating pin can already exit completely from the actuating device in this region without being hindered by top circle regions. High exit speeds of the actuating pin are therefore not required, with the result that slow, simple and low-cost actuating devices can be used. Each shifting groove is advantageously assigned an extended engagement region, allowing the proposed measures also to be used for both grooves of a double S groove.
The material removal is embodied in such a way that it extends as far as the level of the groove bottom and has the same peripheral extent as the extended engagement region.
In another embodiment of the invention, it is provided that, in the case of a double S groove system having two shifting grooves, the extended shifting region and the material removal for the first shifting groove is between about 145° and about 290° of cam angle and the extended engagement region for the second shifting groove amounts to about 75° to about 290° of cam angle. This results in a significant improvement in the possibility for entry and the entry distance of the respective actuating pin. The extended engagement region having a material removal can correspond to the complete sliding cam periphery minus the shifting region, thus ensuring that long peripheral distances are available for the entry of the actuating pins.
Since the braking flank is partially cut away, depending on the embodiment of the extended engagement region, it is provided that the braking flank of the shifting region is offset outward into the wall of the shifting groove.
Since a retaining device, which has a spring-loaded retaining element that is in operative connection with a respective retaining recess assigned to each of the axial positions, is generally effective on the sliding cam, the retaining device can also be used to contribute to the braking of the sliding cam in the respective shifted position.
The invention is described in the drawings:
In
In
The view of the top circle surface 4 in
Modified double S grooves are once again shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2013 223 299.3 | Nov 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2014/200615 | 11/3/2014 | WO | 00 |