The present invention relates to a sliding component having a sliding surface, examples of which include a mechanical seal and a bearing.
The performance of a sliding component is often evaluated in terms of the amount of leakage, the amount of wear, and torque. In the related art, low leakage, long life, and low torque are realized by friction being reduced by fluid interposition between sliding surfaces and liquid leakage from a sliding surface being prevented and, in a mechanical seal, by performance enhancement through sliding material or sliding surface roughness optimization. However, further mechanical seal performance improvement is required with the awareness of environmental issues in recent years growing. Existing mechanical seal-related inventions include one in which a dynamic pressure generation groove is provided in the sliding surface of a rotating ring as a sliding component (See, for example, Patent Citation 1).
No leakage occurs when such a mechanical seal is stationary. During rotation, including the initial stage of rotation, such a mechanical seal operates by fluid lubrication and prevents leakage to achieve both sealing and lubrication while having low friction. A method for this friction reduction is achieved by a dynamic pressure generation groove being formed in a sliding surface, a positive pressure being generated by a fluid that has intruded into the dynamic pressure generation groove of the sliding surface as a result of rotation, and sliding being performed with a liquid film interposed between the sliding surfaces as a result. However, in this type of mechanical seal, foreign matter may intrude into the dynamic pressure generation groove together with the sealing target fluid on the high-pressure side and adhere and stay. This foreign matter may lead to an insufficient dynamic pressure on the sliding surface, damage to the sliding surface, and poor durability.
The present invention has been made in view of such problems, and an object of the present invention is to provide a sliding component capable of preventing foreign matter from staying in a dynamic pressure generation groove and realizing low leakage, long life, and low torque over a long period of time.
In order to solve the above problem, a sliding component according to the present invention is a sliding component including a dynamic pressure generation groove configured for generating a dynamic pressure on a sliding surface of the sliding component, wherein the dynamic pressure generation groove includes: an introduction port which is formed in a first end side of the dynamic pressure generation groove in a circumferential direction and which is open to a sealing target fluid side; a throttle portion communicating with the introduction port and having a narrowed flow path; and a lead-out port which is formed on a second end side of the dynamic pressure generation groove opposed to the first end side in the circumferential direction, which communicates with the throttle portion and which is open to the sealing target fluid side. According to the aforesaid feature of the present invention, the lead-out port of the dynamic pressure generation groove communicates with the sealing target fluid side, and thus foreign matter that has intruded into the dynamic pressure generation groove from the introduction port can be discharged to the sealing target fluid side through the lead-out port and the foreign matter is prevented from staying in the dynamic pressure generation groove. As a result, it is possible to realize low leakage, long life, and low torque over a long period of time.
It may be preferable that the sliding component further includes at least another dynamic pressure generation groove, the dynamic pressure generation grooves are arranged in the circumferential direction in the sliding surface, and the lead-out port of one of adjoining two of the dynamic pressure generation grooves and the introduction port of remaining one of the adjoining two of the dynamic pressure generation grooves communicate with each other. According to this preferable configuration, the adjoining two dynamic pressure generation grooves are capable of communicating with each other and the fluidity of the foreign matter contained in the sealing target fluid can be enhanced.
It may be preferable that the dynamic pressure generation grooves communicate in an annular shape over an entire circumference of the sliding surface. According to this preferable configuration, foreign matter that has intruded into the annular dynamic pressure generation groove from the introduction port is discharged from any of the lead-out ports while annularly circulating in the dynamic pressure generation groove. Accordingly, the foreign matter is unlikely to stay in the dynamic pressure generation groove.
It may be preferable that the sliding component further includes at least another dynamic pressure generation groove, the dynamic pressure generation grooves are arranged in the circumferential direction in the sliding surface, and adjoining two of the dynamic pressure generation grooves are separated from each other in the circumferential direction. According to this preferable configuration, lubricity is enhanced by the plurality of dynamic pressure generation grooves. In addition, the part where the dynamic pressure generation grooves are separated from each other is capable of maintaining sealability.
It may be preferable that the introduction port is formed so as to be a deep groove deeper than the throttle portion. According to this preferable configuration, a large amount of sealing target fluid can be introduced toward the throttle portion from the introduction port formed in the deep groove.
It may be preferable that the lead-out port is formed so as to be a deep groove deeper than the throttle portion. According to this preferable configuration, the lead-out port formed by the deep groove achieves the effect of a pressure release groove and the sealing target fluid and the foreign matter contained in the sealing target fluid are led out with ease.
It may be preferable that the introduction port, the throttle portion, and the lead-out port are formed so as to be equal to each other in depth. According to this preferable configuration, foreign matter that has intruded from the introduction port can be smoothly discharged to the lead-out port.
It may be preferable that the dynamic pressure generation groove further includes at least another lead-out ports. According to this preferable configuration, foreign matter that has intruded from the introduction port can be easily discharged via the plurality of lead-out ports.
It may be preferable that the throttle portion is curved from an inner diameter side toward an outer diameter side of the sliding surface as the throttle portion extends to the lead-out port. According to this preferable configuration, the sealing target fluid and the foreign matter contained in the sealing target fluid are easily discharged from the lead-out port by centrifugal force during sliding.
Modes for implementing the sliding component according to the present invention will be described below based on embodiments.
The sliding component according to the first embodiment of the present invention will be described with reference to
As illustrated in
The fixed seal ring 12 and the rotating seal ring 11 are typically formed of a combination of SiC (as an example of hard material) or a combination of SiC (as the example of hard material) and carbon (as an example of soft material). However, the present invention is not limited thereto and any sliding material can be applied insofar as it is used as a sliding material for a mechanical seal. It should be noted that the SiC includes a sintered body using boron, aluminum, carbon, or the like as a sintering aid and a material made of two or more types of phases having different components and compositions, examples of which include SiC in which graphite particles are dispersed, reaction-sintered SiC made of SiC and Si, SiC—TiC, and SiC—TiN. As the carbon, resin-molded carbon, sintered carbon, and the like can be used, including carbon in which carbon and graphite are mixed. In addition to the above sliding materials, a metal material, a resin material, a surface modification material (e.g., coating material), a composite material, and the like can also be applied.
As illustrated in
The sliding surface S1 of the fixed seal ring 12 includes a plurality of the dynamic pressure generation grooves 4 arranged along the circumferential direction and a flat seal surface M1 formed on the inner diameter side as compared with the dynamic pressure generation grooves 4. Each dynamic pressure generation groove 4 mainly includes a communication port 40a as an introduction port opening at the outer diameter end and communicating with the fluid H side, a communication groove 46a extending in the inner diameter direction from the communication port 40a, a flow path portion 45 communicating with the communication groove 46a and extending in the circumferential direction of the fixed seal ring 12, a communication groove 46b communicating with the flow path portion 45 and extending in the outer diameter direction, and a communication port 40b as a lead-out port opening at the outer diameter end of the communication groove 46b and communicating with the fluid H side. In addition, the sliding surface S1 includes a seal surface L on the outer diameter side surrounded by the communication groove 46a, the flow path portion 45, and the communication groove 46b and is formed at the same height as the seal surface M1.
The flow path portion 45 includes a throttle portion 41, which gradually decreases in width from the communication groove 46a side toward the communication groove 46b side along the circumferential direction. Specifically, the flow path portion 45 includes an outer wall portion 42 on the outer diameter side of the fixed seal ring 12, an inner wall portion 43 on the inner diameter side of the fixed seal ring 12, and a flat bottom surface portion 44 parallel to the seal surface M1 and the narrow throttle portion 41 is formed by the inner wall portion 43 gradually approaching the outer diameter side along the circumferential direction with respect to the outer wall portion 42 extending in the circumferential direction in a circular arc shape concentric with the fixed seal ring 12. The bottom surface portion 44 of the flow path portion 45 is formed on a flat surface having a constant depth shallower than the bottom surface of the communication groove 46a up to the throttle portion 41. In addition, the communication groove 46a is a groove deeper than the bottom surface portion 44 of the flow path portion 45 and a step portion 47a is formed at the boundary between the communication groove 46a and the bottom surface portion 44 of the flow path portion 45. Further, the communication groove 46b is a groove deeper than the bottom surface portion 44 of the flow path portion 45 and a step portion 47b is formed at the boundary between the communication groove 46b and the bottom surface portion 44 of the flow path portion 45.
As illustrated in
In addition, the plurality of dynamic pressure generation grooves 4 arranged along the circumferential direction in the sliding surface S1 have the same configuration and shape without exception and the communication port 40a as an introduction port in the dynamic pressure generation groove 4 is configured as the lead-out port of the dynamic pressure generation groove 4 adjacent to the upstream side of the dynamic pressure generation groove 4. In addition, the communication port 40b as a lead-out port in the dynamic pressure generation groove 4 is configured as the introduction port of the dynamic pressure generation groove 4 adjacent to the downstream side of the dynamic pressure generation groove 4.
In this manner, the introduction ports and the lead-out ports of the adjacent dynamic pressure generation grooves 4 are sequentially arranged in a communicating state, and thus the plurality of dynamic pressure generation grooves 4 communicate in an annular shape over the entire circumference of the sliding surface S1.
Although the dynamic pressure generation groove 4 forms a liquid film between the sliding surface S1 and the sliding surface S2 and improve lubricity by the throttle portion 41 generating the positive pressure, the seal surface M1 is flat, and thus the liquidtightness of the sliding surface S1 is retained even in the event of positive pressure generation by the dynamic pressure generation groove 4.
As illustrated in
In the communication groove 46b at this time, convection occurs between the flow of the sealing target fluid to flow out to the fluid H side (i.e., intra-machine side) after passage through the flow path portion 45 of the dynamic pressure generation groove 4 and positive pressure release and the sealing target fluid to flow into the communication groove 46b from the fluid H side (i.e., intra-machine side) as the introduction port of the dynamic pressure generation groove 4 adjacent to the downstream side and fluidity enhancement occurs as a result. Accordingly, the communication groove 46b causes the foreign matter contained in the sealing target fluid to actively flow and be easily led out to the high-pressure fluid H side. In addition, not only the communication groove 46b but also the communication grooves 46a to 46h constituting the plurality of dynamic pressure generation grooves 4 arranged in the circumferential direction have the same effect. In other words, the communication groove 46b discharging the sealing target fluid in the dynamic pressure generation groove 4 also serves as an introduction port for the fluid H in the dynamic pressure generation groove 4 adjacent thereto. Accordingly, the dynamic pressure generation groove 4 can be formed in an annular shape over the entire circumference in the sliding surface S1 of the fixed seal ring 12.
In addition, as illustrated in
Since the lead-out port of the dynamic pressure generation groove 4 communicates with the high-pressure fluid H side in this manner, foreign matter that has intruded into the dynamic pressure generation groove 4 from the introduction port can be discharged to the high-pressure fluid H side through the lead-out port and the foreign matter is prevented from staying or accumulating in the dynamic pressure generation groove 4. As a result, it is possible to realize low leakage, long life, and low torque over a long period of time.
In addition, in the throttle portion 41 in the present embodiment, the inner wall portion 43 is curved from the inner diameter side to the outer diameter side so as to gradually approach the outer wall portion 42 on the outer diameter side toward the communication port 40b along the circumferential direction. Accordingly, centrifugal force acts on the sealing target fluid and the foreign matter contained in the sealing target fluid and discharge to the high-pressure fluid H side on the outer diameter side is facilitated.
In addition, the plurality of dynamic pressure generation grooves 4 are arranged in the circumferential direction of the sliding surface S1 and the communication port 40b as the lead-out port of one adjacent dynamic pressure generation groove 4 and the communication port 40b as the introduction port of another dynamic pressure generation groove 4 are the same. Accordingly, the two dynamic pressure generation grooves 4 are capable of communicating with each other and the fluidity of the foreign matter contained in the sealing target fluid can be enhanced. It should be noted that the lead-out port of one adjacent dynamic pressure generation groove 4 and the introduction port of the other dynamic pressure generation groove 4 may be arranged side by side in a communicating state.
In addition, since the plurality of dynamic pressure generation grooves 4 are annularly arranged over the entire circumference of the sliding surface S1, foreign matter that has intruded into the annular dynamic pressure generation groove 4 from the communication port as an introduction port is discharged from any of the communication ports as a lead-out port while annularly circulating in the dynamic pressure generation groove 4. Accordingly, the foreign matter is unlikely to stay in the dynamic pressure generation groove 4.
In addition, the communication port 40a as an introduction port is formed in the groove in the throttle portion 41 of the flow path portion 45 deeper than the bottom surface portion 44, and thus a large amount of fluid can be introduced toward the throttle portion 41 from the communication port 40a formed in the deep groove.
In addition, the communication port 40b as a lead-out port is formed in the groove in the throttle portion 41 of the flow path portion 45 deeper than the bottom surface portion 44, and thus the communication port 40b formed in the deep groove achieves the effect of a pressure release groove and the sealing target fluid and the foreign matter contained in the fluid are led out with ease.
Next, the sliding component according to the second embodiment of the present invention will be described with reference to
As illustrated in
The effect of positive pressure generation can be enhanced since the throttle portion 141 is formed over the entire flow path portion 145 as described above. In addition, the throttle portion 141 is formed by the bottom surface portion 144 inclined at a constant angle, and thus a uniform and stable positive pressure generation effect can be obtained.
Next, the sliding component according to the third embodiment of the present invention will be described with reference to
As illustrated in
In addition, a bottom surface portion 244 of the flow path portion 245 is formed on a flat surface having a constant depth shallower than the bottom surface of the communication groove 46a up to the throttle portion 241 and the communication port 240b.
In addition, a plurality of the dynamic pressure generation grooves 24 of the third embodiment are arranged along the circumferential direction in the sliding surface S1 of the fixed seal ring 12, the introduction ports and the lead-out ports of the adjacent dynamic pressure generation grooves 24 are separated from each other in the circumferential direction, and the part is formed as a seal surface M2.
The sealing target fluid that has flowed in from the communication port 240a illustrated in
The adjacent dynamic pressure generation grooves 24 of the present embodiment are separated from each other in the circumferential direction, and thus lubricity is enhanced by the plurality of dynamic pressure generation grooves 24. In addition, the part where the dynamic pressure generation grooves 24 are separated from each other is capable of maintaining sealability as the seal surface M2.
In addition, in the throttle portion 241 in the present embodiment, the outer wall portion 242 and the inner wall portion 243 are curved from the inner diameter side toward the outer diameter side toward the communication port 240b along the circumferential direction, and thus centrifugal force acts on the sealing target fluid and the foreign matter contained in the sealing target fluid and the fluid is easily discharged to the high-pressure fluid H side on the outer diameter side. In addition, in the throttle portion 241, each of the outer wall portion 242 and the inner wall portion 243 forms the throttle portion 241 by being convexly curved from the outer diameter side toward the inner diameter side of the sliding surface, and thus centrifugal force acts with ease.
Next, the sliding component according to the fourth embodiment of the present invention will be described with reference to
As illustrated in
In addition, a plurality of the dynamic pressure generation grooves 34 of the fourth embodiment are arranged along the circumferential direction in the sliding surface S1 of the fixed seal ring 12, the introduction ports and the lead-out ports of the adjacent dynamic pressure generation grooves 34 are separated from each other in the circumferential direction, and the part is formed as the seal surface M2.
The sealing target fluid that has flowed in from the communication port 340a illustrated in
The adjacent dynamic pressure generation grooves 34 of the present embodiment are separated from each other in the circumferential direction, and thus lubricity is enhanced by the plurality of dynamic pressure generation grooves 34. In addition, the part where the dynamic pressure generation grooves 34 are separated from each other is capable of maintaining sealability as the seal surface M2.
Next, the sliding component according to the fifth embodiment of the present invention will be described with reference to
As illustrated in
In addition, a bottom surface portion 444 of the flow path portion 445 is formed on a flat surface having a constant depth up to the communication port 440a, the throttle portion 441, and the communication port 440b.
In addition, a plurality of the dynamic pressure generation grooves 94 of the fifth embodiment are arranged along the circumferential direction in the sliding surface S1 of the fixed seal ring 12, the introduction ports and the lead-out ports of the adjacent dynamic pressure generation grooves 94 are separated from each other in the circumferential direction, and the part is formed as the seal surface M2.
The positive pressure of the sealing target fluid that has flowed into the flow path portion 445 from the communication port 440a illustrated in
The adjacent dynamic pressure generation grooves 94 of the present embodiment are separated from each other in the circumferential direction, and thus lubricity is enhanced by the plurality of dynamic pressure generation grooves 94. In addition, the part where the dynamic pressure generation grooves 94 are separated from each other is capable of maintaining sealability as the seal surface M2.
In addition, in the throttle portion 441 in the present embodiment, the outer wall portion 442 and the inner wall portion 443 are curved from the inner diameter side toward the outer diameter side toward the communication port 440b along the circumferential direction, and thus centrifugal force acts on the sealing target fluid and the foreign matter contained in the sealing target fluid and the fluid is easily discharged to the high-pressure fluid H side on the outer diameter side. In addition, in the throttle portion 441, each of the outer wall portion 442 and the inner wall portion 443 forms the throttle portion 441 by being convexly curved from the outer diameter side toward the inner diameter side of the sliding surface, and thus centrifugal force acts with ease.
Next, the sliding component according to the sixth embodiment of the present invention will be described with reference to
As illustrated in
In addition, the communication port 540a as an introduction port in the dynamic pressure generation groove 54 is configured as the lead-out port of the dynamic pressure generation groove 54 adjacent to the upstream side of the dynamic pressure generation groove 54. In addition, the communication port 540b as a lead-out port in the dynamic pressure generation groove 54 is configured as the introduction port of the dynamic pressure generation groove 54 adjacent to the downstream side of the dynamic pressure generation groove 54.
In this manner, the introduction ports and the lead-out ports of the adjacent dynamic pressure generation grooves 4 are sequentially arranged in a communicating state, and thus the plurality of dynamic pressure generation grooves 4 communicate in an annular shape over the entire circumference of the sliding surface S1.
Further, all the inner diameter ends of the plurality of communication grooves 546a, 546b, and so on arranged in the circumferential direction are continuously formed in an annular shape by an annular groove 547 having the same depth as the communication grooves.
In addition, a communication port 540c extends to the inner diameter side beyond the annular groove 547 and communicates with a negative pressure generation groove 55 shallower than the communication port 540c. The negative pressure generation groove 55 extends in the circumferential direction from the communication port 540c toward the upstream side, and a circumferential end surface 55a is formed as a step portion in relation to the sliding surface S1 on the front side of the lap.
In this manner, a plurality of the dynamic pressure generation grooves 54 are annularly arranged over the entire circumference of the sliding surface S1, and thus foreign matter that has intruded into the annular dynamic pressure generation groove 54 from the communication ports 540a and 540b and so on as introduction ports is discharged from any of the communication ports 540b and 540c and so on as a lead-out port while annularly circulating in the dynamic pressure generation groove 54. Accordingly, the foreign matter is unlikely to stay in the dynamic pressure generation groove 54.
In addition, since the annular groove 547 communicating with all the circumferentially arranged communication grooves is formed, the sealing target fluid on the fluid H side can be introduced and led out to the fluid H side with ease and the fluidity of the foreign matter contained in the sealing target fluid can be enhanced.
The dynamic pressure generation groove 54 generates a positive pressure on the outer diameter side of the sliding surface S1 by means of the throttle portion 541, slightly widens the gap with the sliding surface S2, and forms a liquid film between the sliding surfaces to improve lubricity. In addition, the negative pressure generation groove 55 narrows the gap with the sliding surface S2 by generating a negative pressure on the inner diameter side of the sliding surface S1 to enhance the liquidtightness between the sliding surfaces.
In addition, in the throttle portion 541 in the present embodiment, the inner wall portion 543 is curved from the inner diameter side to the outer diameter side so as to gradually approach the outer wall portion 542 toward the communication port 540b along the circumferential direction. Accordingly, centrifugal force acts on the sealing target fluid and the foreign matter contained in the sealing target fluid and the fluid is easily discharged to the high-pressure fluid H side on the outer diameter side.
Next, the sliding component according to the seventh embodiment of the present invention will be described with reference to
As illustrated in
In addition, the flow path portion 645 includes a communication port 65 as another lead-out port branching to the outer diameter side upstream of the throttle portion 641 and opening at the outer diameter end. The communication port 65 is smaller in cross-sectional area than the flow path portion 645 extending in the circumferential direction. More preferably, the communication port 65 is smaller in cross-sectional area than the throttle portion 641.
As described above, the dynamic pressure generation groove 64 has the communication port 640b and the communication port 65 as lead-out ports. Accordingly, foreign matter that has intruded from the introduction port can be easily discharged via the plurality of communication ports 640b and 65.
Next, the sliding component according to the eighth embodiment of the present invention will be described with reference to
As illustrated in
In addition, the flow path portion 745 includes a plurality of communication ports 75 as separate lead-out ports branching to the outer diameter side at a plurality of circumferential points upstream of the throttle portion 641 and opening at the outer diameter end. The communication port 75 is smaller in cross-sectional area than the flow path portion 745 extending in the circumferential direction. More preferably, the communication port 75 is smaller in cross-sectional area than the throttle portion 641.
As described above, the dynamic pressure generation groove 74 has the communication port 640b and the plurality of communication ports 75 as lead-out ports. Accordingly, foreign matter that has intruded from the introduction port can be easily discharged via the plurality of communication ports 640b and 75.
Although embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to the embodiments.
For example, although the dynamic pressure generation grooves of the embodiments are provided in the sliding surface S1 of the fixed seal ring 12, the present invention is not limited thereto. For example, the dynamic pressure generation groove may be provided in the sliding surface S2 of the rotating seal ring 11.
In addition, although a case where the outer diameter side of the seal ring is the high-pressure fluid H has been described above, the inner diameter side of the seal ring may be the fluid H as the sealing target fluid. In this case, the sliding component 1 is configured to be provided with the dynamic pressure generation groove 4 where the communication ports 40a to 40h communicate with the fluid H on the inner diameter side.
In addition, although a case where the sealing target fluid that is introduced into the dynamic pressure generation groove and led out is the fluid H on the high-pressure side has been described in the embodiments, the present invention is not limited thereto and the sealing target fluid may be a fluid on the low-pressure side.
Number | Date | Country | Kind |
---|---|---|---|
2018-224490 | Nov 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/045728 | 11/22/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/110922 | 6/4/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3085808 | Williams | Apr 1963 | A |
3232680 | Clark | Feb 1966 | A |
3410565 | Williams | Nov 1968 | A |
3466052 | Ludwig | Sep 1969 | A |
3499653 | Gardner | Mar 1970 | A |
3527465 | Guinard | Sep 1970 | A |
3656227 | Weinand | Apr 1972 | A |
3804424 | Gardner | Apr 1974 | A |
4406466 | Geary, Jr. | Sep 1983 | A |
4486026 | Furumura et al. | Dec 1984 | A |
5092612 | Victor | Mar 1992 | A |
5201531 | Lai | Apr 1993 | A |
5222743 | Goldswain | Jun 1993 | A |
5385409 | Ide | Jan 1995 | A |
5441283 | Pecht et al. | Aug 1995 | A |
5447316 | Matsui | Sep 1995 | A |
5492341 | Pecht | Feb 1996 | A |
5498007 | Kulkarni | Mar 1996 | A |
5501470 | Fuse | Mar 1996 | A |
5529318 | Fuse | Jun 1996 | A |
5556111 | Sedy | Sep 1996 | A |
5605339 | Pecht | Feb 1997 | A |
5664787 | Fuse et al. | Sep 1997 | A |
5702110 | Sedy | Dec 1997 | A |
5895051 | Bowers | Apr 1999 | A |
6189896 | Dickey et al. | Feb 2001 | B1 |
6446976 | Key | Sep 2002 | B1 |
6575470 | Gacek | Jun 2003 | B1 |
6817766 | Gomyo | Nov 2004 | B2 |
7510330 | Obara | Mar 2009 | B2 |
7568839 | Gotoh et al. | Aug 2009 | B2 |
7758051 | Roberts-Haritonov et al. | Jul 2010 | B2 |
9062775 | Short et al. | Jun 2015 | B2 |
9353865 | Lattin | May 2016 | B2 |
9353867 | Itadani | May 2016 | B2 |
9371912 | Hosoe et al. | Jun 2016 | B2 |
9587745 | Itadani et al. | Mar 2017 | B2 |
9677670 | Itadani et al. | Jun 2017 | B2 |
9829109 | Itadani et al. | Nov 2017 | B2 |
9845886 | Itadani | Dec 2017 | B2 |
9951873 | Inoue et al. | Apr 2018 | B2 |
9982784 | Osada et al. | May 2018 | B2 |
10054230 | Katori | Aug 2018 | B2 |
10072759 | Inoue et al. | Sep 2018 | B2 |
10113648 | Inoue et al. | Oct 2018 | B2 |
10190689 | Yoshida | Jan 2019 | B2 |
10337620 | Tokunaga et al. | Jul 2019 | B2 |
10352450 | Yamanaka et al. | Jul 2019 | B2 |
10408349 | Miyazaki | Sep 2019 | B2 |
10473220 | Tokunaga et al. | Nov 2019 | B2 |
10487944 | Itadani | Nov 2019 | B2 |
10487948 | Inoue et al. | Nov 2019 | B2 |
10495228 | Itadani et al. | Dec 2019 | B2 |
10648569 | Itadani | May 2020 | B2 |
10655736 | Itadani | May 2020 | B2 |
10704417 | Tokunaga et al. | Jul 2020 | B2 |
10781924 | Inoue et al. | Sep 2020 | B2 |
10883603 | Inoue et al. | Jan 2021 | B2 |
10883604 | Inoue et al. | Jan 2021 | B2 |
11009072 | Kimura et al. | May 2021 | B2 |
11009130 | Itadani | May 2021 | B2 |
11125335 | Kimura et al. | Sep 2021 | B2 |
11221071 | Sasaki | Jan 2022 | B2 |
11525512 | Kimura | Dec 2022 | B2 |
11530749 | Kimura | Dec 2022 | B2 |
11603934 | Imura | Mar 2023 | B2 |
11644100 | Kimura | May 2023 | B2 |
20020093141 | Wang | Jul 2002 | A1 |
20030178781 | Tejima | Sep 2003 | A1 |
20040080112 | Tejima | Apr 2004 | A1 |
20050141789 | Kita et al. | Jun 2005 | A1 |
20050212217 | Tejima | Sep 2005 | A1 |
20070296156 | Yanagisawa et al. | Dec 2007 | A1 |
20080100001 | Flaherty | May 2008 | A1 |
20080272552 | Zheng | Nov 2008 | A1 |
20100066027 | Vasagar | Mar 2010 | A1 |
20110101616 | Teshima | May 2011 | A1 |
20120018957 | Watanabe | Jan 2012 | A1 |
20130189294 | Koelle et al. | Jul 2013 | A1 |
20130209011 | Tokunaga | Aug 2013 | A1 |
20150115537 | Tokunaga | Apr 2015 | A1 |
20150123350 | Itadani | May 2015 | A1 |
20150184752 | Itadani | Jul 2015 | A1 |
20150226334 | Itadani | Aug 2015 | A1 |
20150240950 | Takahashi | Aug 2015 | A1 |
20150260292 | Inoue et al. | Sep 2015 | A1 |
20150377297 | Tokunaga et al. | Dec 2015 | A1 |
20150377360 | Itadani | Dec 2015 | A1 |
20160033045 | Itadani et al. | Feb 2016 | A1 |
20160097457 | Sun et al. | Apr 2016 | A1 |
20160252182 | Itadani et al. | Sep 2016 | A1 |
20170009889 | Seki | Jan 2017 | A1 |
20170198814 | Colombo et al. | Jul 2017 | A1 |
20170234431 | Katori et al. | Aug 2017 | A1 |
20180051809 | Yoshida | Feb 2018 | A1 |
20180058584 | Miyazaki | Mar 2018 | A1 |
20180073394 | Tokunaga et al. | Mar 2018 | A1 |
20180128377 | Tokunaga et al. | May 2018 | A1 |
20180128378 | Tokunaga et al. | May 2018 | A1 |
20190178386 | Arai | Jun 2019 | A1 |
20190301522 | Negishi et al. | Oct 2019 | A1 |
20190376558 | Kimura | Dec 2019 | A1 |
20210080006 | Sasaki | Mar 2021 | A1 |
20210116029 | Kimura | Apr 2021 | A1 |
20210116030 | Kimura | Apr 2021 | A1 |
20210116032 | Kimura | Apr 2021 | A1 |
20210164571 | Kimura | Jun 2021 | A1 |
20220010835 | Inoue | Jan 2022 | A1 |
20220099191 | Suzuki | Mar 2022 | A1 |
20220275828 | Inoue | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
1364987 | Aug 2002 | CN |
2534429 | Feb 2003 | CN |
1401924 | Mar 2003 | CN |
101749431 | Jun 2010 | CN |
101776152 | Jul 2010 | CN |
201582390 | Sep 2010 | CN |
103267132 | Aug 2013 | CN |
103732958 | Apr 2014 | CN |
103791097 | May 2014 | CN |
104019237 | Sep 2014 | CN |
104165229 | Nov 2014 | CN |
105683632 | Jun 2016 | CN |
106439037 | Feb 2017 | CN |
206017723 | Mar 2017 | CN |
107166036 | Sep 2017 | CN |
107532724 | Jan 2018 | CN |
107676484 | Feb 2018 | CN |
108506494 | Sep 2018 | CN |
36 19 489 | Dec 1987 | DE |
4407453 | Sep 1995 | DE |
0637706 | Aug 1993 | EP |
0896163 | Feb 1999 | EP |
3926188 | Dec 2001 | EP |
2520835 | Nov 2012 | EP |
2626604 | Aug 2013 | EP |
2977655 | Jan 2016 | EP |
3091258 | Nov 2016 | EP |
3299686 | Mar 2018 | EP |
3514414 | Jul 2019 | EP |
3922872 | Dec 2021 | EP |
3926187 | Dec 2021 | EP |
3943765 | Jan 2022 | EP |
1509482 | May 1978 | GB |
36-6305 | May 1961 | JP |
S49-33614 | Sep 1974 | JP |
S54-77305 | Jun 1979 | JP |
S55-177549 | Dec 1980 | JP |
S57-146955 | Sep 1982 | JP |
58-109771 | Jun 1983 | JP |
58-137667 | Aug 1983 | JP |
S59-58252 | Apr 1984 | JP |
S60-107461 | Jul 1985 | JP |
S6182177 | May 1986 | JP |
S62-37572 | Feb 1987 | JP |
S63-033027 | Mar 1988 | JP |
S63-190975 | Aug 1988 | JP |
H01133572 | Sep 1989 | JP |
2-236067 | Sep 1990 | JP |
3-14371 | Feb 1991 | JP |
3-35372 | Apr 1991 | JP |
3-41267 | Apr 1991 | JP |
3-41268 | Apr 1991 | JP |
H04-73 | Jan 1992 | JP |
H04-145267 | May 1992 | JP |
H04-96671 | Aug 1992 | JP |
H05-90048 | Dec 1993 | JP |
H05-322050 | Dec 1993 | JP |
H07-55016 | Mar 1995 | JP |
H08-89489 | Apr 1996 | JP |
H09-503276 | Mar 1997 | JP |
H09-329247 | Dec 1997 | JP |
H10-38093 | Feb 1998 | JP |
H10-281299 | Oct 1998 | JP |
2000-179543 | Jun 2000 | JP |
2001-295833 | Oct 2001 | JP |
2001-317638 | Nov 2001 | JP |
2003-161322 | Jun 2003 | JP |
2003-343741 | Dec 2003 | JP |
2004-003578 | Jan 2004 | JP |
2005-188651 | Jul 2005 | JP |
2005-58051 | Dec 2005 | JP |
2006-9828 | Jan 2006 | JP |
2006-022834 | Jan 2006 | JP |
2006-77899 | Mar 2006 | JP |
2008-144864 | Jun 2008 | JP |
2009-250378 | Oct 2009 | JP |
2010-133496 | Jun 2010 | JP |
2010-216587 | Sep 2010 | JP |
2011-185292 | Sep 2011 | JP |
2012-2295 | Jan 2012 | JP |
5271858 | May 2013 | JP |
2016-80090 | May 2016 | JP |
2017-141961 | Aug 2017 | JP |
6444492 | Dec 2018 | JP |
2019-15401 | Jan 2019 | JP |
WO 9506832 | Mar 1995 | WO |
WO 2012046749 | Apr 2012 | WO |
WO 2014024742 | Feb 2014 | WO |
WO 2014050920 | Apr 2014 | WO |
WO 2014103630 | Jul 2014 | WO |
WO 2014112455 | Jul 2014 | WO |
WO2014103631 | Jul 2014 | WO |
WO 2014148316 | Sep 2014 | WO |
WO 2014174725 | Oct 2014 | WO |
WO 2016009408 | Jan 2016 | WO |
WO 2016035860 | Mar 2016 | WO |
WO2016035860 | Mar 2016 | WO |
WO 2016167262 | Oct 2016 | WO |
WO 2016186019 | Nov 2016 | WO |
WO2016203878 | Dec 2016 | WO |
WO 2017002774 | Jan 2017 | WO |
WO 2018034197 | Feb 2018 | WO |
WO 2018105505 | Jun 2018 | WO |
WO2018139231 | Aug 2018 | WO |
WO2018139232 | Aug 2018 | WO |
Entry |
---|
Chinese Office Action issued in application No. 201980076998.4 (with translation), dated Jan. 18, 2023, 12 pages. |
Chinese Office Action issued in application No. 201980059152.X (with translation), dated Oct. 10, 2022, 14 pages. |
Chinese Office Action issued in application No. 202080012994.2(with translation), dated Feb. 2, 2023, 13 pages. |
Chinese Office Action issued in application No. 202080012994.2(with translation), dated Apr. 24, 2023, 12 pages. |
Chinese Office Action issued in application No. 201980082245.4 (with translation), dated Feb. 16, 2023, 23 pages. |
European Official Action issued in application No. 19869466.3, dated Mar. 16, 2023, 7 pages. |
European Official Action issued in application No. 22212136.0, dated Mar. 15, 2023, 8 pages. |
European Official Action issued in application No. 19850900.2, dated Mar. 28, 2023, 4 pages. |
European Official Action issued in application No. 23155551.7, dated Feb. 28, 2023, 7 pages. |
European Official Action issued in application No. 19888532.9, dated Mar. 7, 2023, 3 pages. |
European Official Action issued in application No. 23158438.4, dated May 15, 2023, 11 pages. |
Japanese Decision of Refusal issued in application No. 2021-502065, dated May 23, 2023, 8 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7002193, dated Jan. 11, 2023, 11 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7022185, dated Apr. 6, 2023, 12 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7016898, dated Feb. 16, 2023, 13 pages. |
Official Action issued in related U.S. Appl. No. 17/413,466, dated Apr. 12, 2023, 11 pages. |
Official Action issued in related U.S. Appl. No. 17/296,466, dated Apr. 12, 2023, 9 pages. |
Official Action issued in related U.S. Appl. No. 17/428,909, dated Apr. 21, 2023, 8 pages. |
Official Action issued in related U.S. Appl. No. 17/628,158, dated May 15, 2023, 14 pages. |
U.S. Appl. No. 17/413,466, filed Jun. 11, 2021, Imura et al. |
U.S. Appl. No. 17/420,660, filed Jul. 2, 2021, Suzuki et al. |
U.S. Appl. No. 17/428,909, filed Aug. 5, 2021, Tokunaga et al. |
U.S. Appl. No. 17/429,986, filed Aug. 10, 2021, Suzuki et al. |
U.S. Appl. No. 17/603,561, filed Oct. 13, 2021, Imura et al. |
Definition of groove by Merriam Webster. |
Chinese Office Action issued in application No. 201380070532.6 (with translation), dated Jan. 28, 2016 (13 pgs). |
Chinese Office Action issued in application No. 201380070532.6 (with translation), dated Sep. 20, 2016 (12 pgs). |
Second Office Action issued by the State Intellectual Property Office of China, dated Aug. 29, 2016, for Chinese counterpart application No. 201480002574.0, 8 pages. |
First Notification of Reason for Refusal issued by the State Intellectual Property Office of China, dated Dec. 24, 2015, with a search report for Chinese counterpart application No. 201480002574.0, 11 pages. |
Office Action issued in U.S. Appl. No. 14/431,733, dated Apr. 29, 2016 (22 pgs). |
Office Action issued in U.S. Appl. No. 14/431,733, dated Aug. 18, 2017 (13 pgs). |
Office Action issued in U.S. Appl. No. 14/431,733, dated Mar. 31, 2017 (14 pgs). |
Office Action issued in U.S. Appl. No. 14/431,733, dated Oct. 6, 2016 (12 pgs). |
Office Action issued in U.S. Appl. No. 15/419,989, dated Jan. 26, 2018 (20 pgs). |
Office Action issued in U.S. Appl. No. 15/419,970, dated May 11, 2018 (17 pgs). |
Office Action issued in U.S. Appl. No. 15/419,970, dated Jan. 23, 2018 (21 pgs). |
Office Action issued in U.S. Appl. No. 15/842,862, dated Jun. 5, 2019 (37 pgs). |
Office Action issued in U.S. Appl. No. 15/842,855, dated Mar. 12, 2020 (11 pgs). |
Office Action issued in U.S. Appl. No. 15/842,855, dated Jun. 29, 2020, 16 pages. |
Office Action issued in U.S. Appl. No. 15/842,858, dated Mar. 31, 2020 (10 pgs). |
Office Action issued in U.S. Appl. No. 15/842,859, dated Apr. 8, 2020 (12 pgs). |
Notice of Allowance issued in U.S. Appl. No. 15/419,970, dated Aug. 9, 2018 (16 pgs). |
Notice of Allowance issued in U.S. Appl. No. 14/431,733, dated Feb. 23, 2018 (22 pgs). |
Notice of Allowance issued in U.S. Appl. No. 15/419,989, dated Jul. 23, 2018 (11 pgs). |
Notice of Allowance issued in U.S. Appl. No. 15/842,862, dated Sep. 30, 2019, 15 pages. |
Japanese Office Action (w/translation) issued in application 2018-159877, dated Jun. 13, 2019 (7 pgs). |
Intemational Search Report issued in application No. PCT/JP2013/084029, dated Mar. 25, 2014 (4 pgs). |
International Preliminary Report on Patentability issued in application No. PCT/JP2013/084029, dated Nov. 5, 2015 (8 pgs). |
International Search Report and Written Opinion issued in PCT/JP2014/050402, dated Feb. 10, 2014, with English translation, 12 pages. |
International Preliminary Report on Patentability issued in PCT/JP2014/050402, dated Jul. 21, 2015, 4 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/045728, dated Dec. 17, 2019, with English translation, 13 pages. |
International Preliminar Report on Patentability issued in PCT/JP2019/045728, dated May 25, 2021, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/047890, dated Feb. 10, 2020, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/047890, dated Aug. 10, 2021, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/049870, dated Mar. 10, 2020, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/049870, dated Jun. 16, 2021, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/005260, dated Apr. 7, 2020, with English translation, 16 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/005260, dated Aug. 10, 2021, 9 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/006421, dated Apr. 21, 2020, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/006421, dated Aug. 10, 2021, 6 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/017170, dated Jun. 2, 2020, with English translation, 13 pages. |
International PreliminaryReport on Patentability issued in PCT/JP2020/027005, dated Feb. 1, 2022, 4 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/027005, dated Sep. 1, 2020, with English translation, 11 pages. |
International Pmliminaty Report on Patentability issued in PCT/JP2019/032723, dated Mar. 2, 2021, 6 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/032723, dated Nov. 5, 2019, with English translation, 17 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/029771, dated Feb. 2, 2021, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/029771, dated Sep. 17, 2019, with English translation, 20 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/040209, dated Apr. 27, 2021, 6 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/040209, dated Dec. 24, 2019, with English translation, 17 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/038155, dated Mar. 23, 2021, 6 pages. |
International Search Report and Written Opinion issued in PC/JP2019/038155, dated Nov. 19, 2019, with English translation, 18 pages. |
European Official Action issued in related European Patent Application Serial No. 19850900.2, dated Mar. 31, 2022, 11 pages. |
European Official Action issued in related European Patent Application Serial No. 19843273.4, dated Mar. 24, 2022, 9 pages. |
Chinese Office Action issued in application No. 201980087670.2 (with translation), dated Jul. 1, 2022 (17 pgs). |
Chinese Office Action issued in application No. 201980043720.7 (with translation), dated Jun. 6, 2022 (12 pgs). |
Chinese Office Action issued in application No. 202080014381.2 (with translation), dated Aug. 11, 2022 (15 pgs). |
Chinese Office Action issued in application No. 202080012994.2 (with translation), dated Aug. 29, 2022 (14 pgs). |
European Official Action issued in related European Patent Application Serial No. 19869466.3, dated May 19, 2022, 9 pages. |
European Official Action issued in related European Patent Application Serial No. 19876680.0, dated Jun. 3, 2022, 8 pages. |
European Official Action issued in related European Patent Application Serial No. 19888532.9, dated Jul. 8, 2022, 7 pages. |
European Official Action issued in related European Patent Application Serial No. 19899646.4, dated Aug. 12, 2022, 9 pages. |
Korean Office Action issued in application No. 10-2020-7037305 (with translation), dated Jun. 24, 2022 (17 pgs). |
Korean Office Action issued in application No. 10-2021-7002193 (with translation), dated Jul. 18, 2022 (13 pgs). |
Office Action issued in U.S. Appl. No. 17/257,260, dated Jul. 6, 2022 (12 pgs). |
U.S. Appl. No. 17/257,260, filed Dec. 30, 2020, Okada. |
U.S. Appl. No. 17/259,336, filed Jan. 11, 2021, Imura. |
U.S. Appl. No. 17/275,505, filed Mar. 11, 2021, Tokunaga et al. |
U.S. Appl. No. 17/277,282, filed Mar. 17, 2021, Tokunaga. |
U.S. Appl. No. 17/429,896, filed Aug. 10, 2021, Suzuki et al. |
U.S. Appl. No. 17/628,158, filed Jan. 18, 2022, Inoue et al. |
Chinese Office Action issued in application No. 201980065303.2 (with translation), dated Oct. 10, 2022 (13 pgs). |
European Official Action issued in related European Patent Application Serial No. 19914452.8, dated Oct. 5, 2022, 10 pages. |
European Official Action issued in related European Patent Application Serial No. 20756664.7, dated Oct. 14, 2022, 8 pages. |
European Official Action issued in related European Patent Application Serial No. 20759684.2, dated Oct. 17, 2022, 7 pages. |
Korean Office Action issued in application No. 10-2021-7019130 (with translation), dated Oct. 22, 2022 (13 pgs). |
Korean Office Action issued in application No. 10-2021-7007194 (with translation), dated Nov. 7, 2022 (14 pgs). |
Korean Office Action issued in application No. 10-2021-7009776 (with translation), dated Dec. 12, 2022 (19 pgs). |
Notice of Allowance issued in U.S. Appl. No. 17/257,260, dated Nov. 23, 2022, 9 pages. |
Chinese Office Action issued in application No. 201980059152.X (with translation), dated May 8, 2023, 11 pages. |
Chinese Office Action issued in application No. 201980082245.4 (with translation), dated Aug. 3, 2023, 25 pages. |
European Official Action issued in application No. 19876680.0, dated Aug. 24, 2023, 8 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7028879, dated Jun. 28, 2023, 10 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2022-7002564, dated Jun. 27, 2023, 11 pages with translation. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7028347, dated Jun. 22, 2023, 11 pages with translation. |
Official Action issued in related U.S. Appl. No. 17/428,909, dated Jul. 25, 2023, 8 pages. |
European Search Report issued in application No. 20847261.3, dated Jul. 17, 2023, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20220010835 A1 | Jan 2022 | US |