This application is a U.S. National Stage Application of International Application No. PCT/JP2017/028659, filed on Aug. 8, 2017, and published in Japanese as WO 2018/034197 on Feb. 22, 2018 and claims priority to Japanese Application No. 2016-159198, filed on Aug. 15, 2016. The entire disclosures of the above applications are incorporated herein by reference.
The present invention relates to sliding components suitable, for example, as mechanical seals, bearings, and other sliding units. More particularly, the present invention relates to sliding components such as seal rings or bearings that require a reduction of friction by interposing fluid between sliding faces, and prevention of leakage of the fluid from the sliding faces.
A mechanical seal, an example of a sliding component, is evaluated for its performance by the leakage rate, wear rate, and torque thereof. Conventional arts have optimized the sliding material and the sliding face roughness of mechanical seals, thereby enhancing the performance and achieving low leakage, long life, and low torque. However, due to growing awareness of environmental problems in recent years, a further improvement in the performance of mechanical seals has been required. Thus, technical development beyond the limits of the conventional arts has been necessary.
It has been confirmed that in a mechanical seal used for cooling a water-cooled engine, for example, as time passes, an additive in antifreeze, e.g. a rust-inhibiting component can be concentrated on a sliding face, forming deposits, and thus degrading the function of the mechanical seal. The deposit formation is considered to be a phenomenon that occurs likewise in mechanical seals of apparatuses that handle chemicals or oils.
In a mechanical seal using a surface texture, negative pressure can be generated in a sliding face, depending on its characteristics. An experiment has confirmed that a sealed fluid entering the sliding face due to the negative pressure can evaporate, causing a deposit formation-causing substance to be excessively precipitated and formed, forming deposits at an increasing rate, and thereby degrading the function of the mechanical seal.
It is conceivable that a diamond-like carbon (abbreviated as DLC) film, for example, is noticed as a film of an adhesion-resistant material, and a sliding face of a sliding member is coated with diamond-like carbon, thereby preventing the buildup of deposits on a surface of a negative-pressure generation mechanism on which deposits tend to be precipitated and formed, as described in JP 2012-62534 A and JP 5-296248 A (hereinafter, referred to as “Conventional Art 1”).
It is likewise conceivable that from the viewpoint of preventing the buildup of deposits, a sliding part is made of glassy carbon (hereinafter, referred to as “Conventional Art 2”).
As a sliding material having excellent tribological properties, known is one including a hard carbon film with glassy carbon formed all over a sliding face of a sliding material, a micro-periodic structure formed by irradiating the surface of the hard carbon film with a ultrashort pulse laser, and a lubricating layer containing a solid lubricant formed to cover the micro-periodic structure (hereinafter, referred to as “Conventional Art 3.” See JP 2007-162045 A, for example.).
However, Conventional Art 1 has a problem with durability because the diamond-like carbon film is about 1 μm in thickness, and thus tends to peel off.
Conventional Art 2 has problems that there is a limit to manufacturing size because a large-volume one cannot be made of glassy carbon, that a crack or deformation occurs because gas generated during carbonization does not easily escape from inside, and that manufacturing takes time because of the necessity of slowing down the release of gas generated from inside.
Conventional Art 3 has a problem that an advanced manufacturing technique is required. For example, substrate selection is necessary, and application of high-density energy is required to prevent a substrate from being thermally and mechanically degraded.
It is an object of the present invention to provide a sliding component that prevents a deposit formation-causing substance from forming deposits on a sliding face even when a liquid of antifreeze to which a rust inhibitor is added is sealed as in a mechanical seal suitable for cooling a water-cooled engine, for example, to improve the sealing function of the sliding face.
In particular, it is an object of the present invention to provide a sliding component that prevents deposition of precipitates on negative-pressure portions and prevents adhesion of deposits on a land even when a deposit formation-causing substance is precipitated and formed from a sealed fluid entering a sliding face due to negative pressure at the sliding face, to improve the sealing function of the sliding face.
It is also an object of the present invention to provide a sliding component improved in the wear resistance and foreign matter-resistant properties of a sliding face.
To attain the above objects, a sliding component according to a first aspect of the present invention is a sliding component that includes an annular stationary-side seal ring fixed to a stationary side and an annular rotating-side seal ring rotating with a rotating shaft, the stationary-side seal ring and the rotating-side seal ring having respective sliding faces opposite to each other, the sliding faces being relatively rotated, thereby sealing a high-pressure fluid present on one radial side of the sliding faces relatively rotationally sliding, in which at least one of the stationary-side seal ring and the rotating-side seal ring includes a substrate, an adhesion layer on a sliding face side of the substrate, and a glassy carbon sheet member stuck on the substrate via the adhesion layer.
According to this aspect, the presence of glassy carbon on the sliding face of the seal ring prevents concentration of a deposit formation-causing substance and formation of deposits on the sliding face. Thus, the sliding component improved in the sealing function of the sliding face can be provided.
Glassy carbon, which is a material excellent in wear resistance, can prevent wear on the sliding face sliding in a fluid lubrication state from reaching a deep portion, improving the wear resistance and foreign matter-resistant properties of the sliding component.
Separately from the substrate of the seal ring, the sheet member of sheet-shaped glassy carbon is stuck on the sliding face side of the substrate. This configuration can facilitate the escape of gas generated from inside to prevent occurrence of cracks, compared to the case where an entire seal ring is formed of glassy carbon as in Conventional Art 2. Further, the poor thermal conductivity of glassy carbon can be covered by the material of the substrate.
Even a large seal ring that cannot be manufactured when an entire seal ring is formed of glassy carbon can be manufactured.
Even when a surface texture is formed on the sliding face, the surface texture can be formed on the sheet member, and thus is easily formed.
Separately from the substrate of the seal ring, the sheet member of sheet-shaped glassy carbon is stuck on the sliding face side of the substrate. This configuration enables provision of a glassy carbon region on the sliding face without requiring an advanced technique, compared to the case where a glassy carbon modified region is formed on a sliding face of a sliding material as in Conventional Art 3.
The material of the substrate is not limited to materials that allow formation of a glassy carbon modified region. Thus, the degree of freedom in material selection can be increased. For example, a low-cost material can be selected to reduce material cost. Alternatively, for example, a material with good thermal conductivity can be selected to provide a sliding component with high heat dispersion characteristics.
Even when a surface texture is formed on the sliding face, the surface texture can be formed on the sheet member, and thus is easily formed.
According to a second aspect of the present invention, in the sliding component in the first aspect, the substrate is formed of carbon, SiC, or cemented carbide.
According to this aspect, the sliding component can be produced with a commonly used material.
According to a third aspect of the present invention, in the sliding component in the first or second aspect, the adhesion layer is formed of a thermosetting resin.
According to this aspect, only by heating the adhesion layer, the glassy carbon sheet member can be securely integrated with the substrate.
According to a fourth aspect of the present invention, in the sliding component in any one of the first to third aspects, the sheet member has a sliding face provided with dimples.
According to this aspect, a sealed fluid can be held and positive pressure (dynamic pressure) can be generated at the sliding face, so that a fluid film between the sliding faces can be increased to improve lubrication performance.
The dimples can be provided previously with a mold or by blanking when the sheet member is produced. Thus, the need to form the dimples after the sheet member is adhered to the substrate can be eliminated, and the dimples can be easily formed.
Even when negative pressure is generated on the upstream side in the dimples, and a sealed fluid entering the sliding face evaporates, causing a deposit formation-causing substance to be precipitated and formed, the presence of the glassy carbon sheet member can prevent the deposition of precipitates on negative-pressure portions, and prevent the adhesion of deposits on a land.
According to a fifth aspect of the present invention, in the sliding component in any one of the first to third aspects, the sheet member has a sliding face provided with spiral grooves.
According to this aspect, positive pressure (dynamic pressure) can be generated at the sliding face, so that a fluid film between the sliding faces can be increased to improve lubrication performance.
The spiral grooves can be provided previously with a mold or by blanking when the sheet member is produced. Thus, the need to form the spiral grooves after the sheet member is adhered to the substrate can be eliminated, and the spiral grooves can be easily formed.
Even when negative pressure is generated on the upstream side in the spiral grooves, and a sealed fluid entering the sliding face evaporates, causing a deposit formation-causing substance to be precipitated and formed, the presence of the glassy carbon sheet member can prevent the deposition of precipitates on negative-pressure portions, and prevent the adhesion of deposits on a land.
According to a sixth aspect of the present invention, in the sliding component in any one of the first to third aspects, the sheet member has a sliding face provided with at least one Rayleigh step mechanism.
According to this aspect, positive pressure (dynamic pressure) can be generated at the sliding face, so that a fluid film between the sliding faces can be increased to improve lubrication performance.
The at least one Rayleigh step mechanism can be provided previously with a mold when the sheet member is produced. Thus, the need to form the at least one Rayleigh step mechanism after the sheet member is adhered to the substrate can be eliminated, and the at least one Rayleigh step mechanism can be easily formed.
Even when negative pressure is generated on the upstream side in the at least one Rayleigh step mechanism, and a deposit formation-causing substance is precipitated and formed from a sealed fluid entering the sliding face, the presence of the glassy carbon sheet member can prevent the deposition of precipitates on negative-pressure portions, and prevent the adhesion of deposits on a land.
The present invention achieves the following outstanding effects.
(1) At least one of the stationary-side seal ring and the rotating-side seal ring includes the substrate, the adhesion layer on the sliding face side of the substrate, and the glassy carbon sheet member stuck on the substrate via the adhesion layer, so that the presence of glassy carbon on the sliding face S of the seal ring prevents concentration of a deposit formation-causing substance and formation of deposits on the sliding face S. Thus, the sliding component improved in the sealing function of the sliding face can be provided.
Glassy carbon, which is a material excellent in wear resistance, can prevent wear on the sliding face sliding in a fluid lubrication state from reaching a deep portion, improving the wear resistance and foreign matter-resistant properties of the sliding component.
Separately from the substrate of the seal ring, the sheet member of sheet-shaped glassy carbon is stuck on the sliding face side of the substrate. This configuration can facilitate the escape of gas generated from inside to prevent occurrence of cracks, compared to the case where an entire seal ring is formed of glassy carbon as in Conventional Art 2. Further, the poor thermal conductivity of glassy carbon can be covered by the material of the substrate.
Even a large seal ring that cannot be manufactured when an entire seal ring is formed of glassy carbon can be manufactured.
Even when a surface texture is formed on the sliding face, the surface texture can be formed on the sheet member, and thus is easily formed.
Separately from the substrate of the seal ring, the sheet member of sheet-shaped glassy carbon is stuck on the sliding face side of the substrate. This configuration enables provision of a glassy carbon region on the sliding face without requiring an advanced technique, compared to the case where a glassy carbon modified region is formed on a sliding face of a sliding material as in Conventional Art 3.
The material of the substrate is not limited to materials that allow formation of a glassy carbon modified region. Thus, the degree of freedom in material selection can be increased. For example, a low-cost material can be selected to reduce material cost. Alternatively, for example, a material with good thermal conductivity can be selected to provide a sliding component with high heat dispersion characteristics.
Even when a surface texture is formed on the sliding face, the surface texture can be formed on the sheet member, and thus is easily formed.
(2) The substrate is formed of carbon, SiC, or cemented carbide, so that the sliding component can be produced with a commonly used material.
(3) The adhesion layer is formed of a thermosetting resin, so that only by heating the adhesion layer, the glassy carbon sheet member can be securely integrated with the substrate.
(4) The sheet member has the sliding face provided with the dimples, so that the sealed fluid can be held and positive pressure (dynamic pressure) can be generated at the sliding face. Thus, the fluid film between the sliding faces can be increased to improve lubrication performance.
The dimples can be provided previously with a mold or by blanking when the sheet member is produced. Thus, the need to form the dimples after the sheet member is adhered to the substrate can be eliminated, and the dimples can be easily formed.
Even when negative pressure is generated on the upstream side in the dimples, and a deposit formation-causing substance is precipitated and formed from the sealed fluid entering the sliding face, the presence of the glassy carbon sheet member can prevent the deposition of precipitates on negative-pressure portions, and prevent the adhesion of deposits on the land.
(5) The sheet member has the sliding face provided with the spiral grooves, so that positive pressure (dynamic pressure) can be generated at the sliding face, and the fluid film between the sliding faces can be increased to improve lubrication performance.
The spiral grooves can be provided previously with a mold or by blanking when the sheet member is produced. Thus, the need to form the spiral grooves after the sheet member is adhered to the substrate can be eliminated, and the spiral grooves can be easily formed.
Even when negative pressure is generated on the upstream side in the spiral grooves, and the sealed fluid entering the sliding face evaporates, causing a deposit formation-causing substance to be precipitated and formed, the presence of the glassy carbon sheet member can prevent the deposition of precipitates on negative-pressure portions, and prevent the adhesion of deposits on the land.
(6) The sheet member has the sliding face provided with the at least one Rayleigh step mechanism, so that positive pressure (dynamic pressure) can be generated at the sliding face, and the fluid film between the sliding faces can be increased to improve lubrication performance.
The at least one Rayleigh step mechanism can be provided previously with a mold when the sheet member is produced. Thus, the need to form the at least one Rayleigh step mechanism after the sheet member is adhered to the substrate can be eliminated, and the at least one Rayleigh step mechanism can be easily formed.
Even when negative pressure is generated on the upstream side in the at least one Rayleigh step mechanism, and the sealed fluid entering the sliding face evaporates, causing a deposit formation-causing substance to be precipitated and formed, the presence of the glassy carbon sheet member can prevent the deposition of precipitates on negative-pressure portions, and prevent the adhesion of deposits on the land.
Hereinafter with reference to the drawings, a mode for carrying out this invention will be described illustratively based on embodiments. However, the dimensions, materials, shapes, relative arrangements, and others of components described in the embodiments are not intended to limit the scope of the present invention only to them unless otherwise described explicitly.
With reference to
This embodiment describes, as an example, a mechanical seal that is an example of the sliding component. The outer-peripheral side of sliding parts constituting the mechanical seal is described as the high-pressure fluid side (sealed fluid side), and the inner-peripheral side as the low-pressure fluid side (atmosphere side). The present invention is not limited to this, and is applicable to the case where the high-pressure fluid side and the low-pressure fluid side are reversed.
In
Note that the present invention is not limited to
As shown in
The other seal ring, in this example, the stationary-side seal ring 5 is formed of a substrate in one body.
Note that the present invention is not limited to FIG. and
The sealed fluid is a fluid such as antifreeze to which a rust inhibitor is added.
The material of the substrates of the rotating-side seal ring 3 and the stationary-side seal ring 5 is typically selected from silicon carbide (SiC) excellent in wear resistance, carbon and cemented carbide excellent in self-lubricity, and the like. For example, both may be silicon carbide, or a combination of the rotating-side seal ring 3 being silicon carbide and the stationary-side seal ring 5 being carbon is possible.
As a sliding material of mechanical seals or the like, silicon carbide, in particular, is known to be a suitable material with good heat dispersion characteristics and excellent wear resistance. However, as described above, there is a problem that because of the properties of a rust-inhibiting component contained in antifreeze, a deposit formation-causing substance concentrated and formed accumulates on a sliding face, causing the sliding face to lose smoothness, and thus leading to leakage.
Thus, the present invention is characterized in that at least one seal ring of the rotating-side seal ring 3 and the stationary-side seal ring 5 includes a substrate, an adhesion layer on the sliding face side of the substrate, and a glassy carbon sheet member stuck on the substrate via the adhesion layer.
Glassy carbon is a material made by carbonizing a thermosetting resin, not glass, and is characterized by not passing gas, passing electricity, being acid resistant, being wear resistant, and so on.
In a typical method of manufacturing glassy carbon, a thermosetting resin such as a phenol resin, a polyimide resin, an epoxy resin, or a furan resin is molded by injection molding, compression molding, or the like, and the resin molding is fired and carbonized in an inert gas atmosphere at one thousand some hundreds degrees Celsius. Firing causes elements other than carbon in the resin molding, that is, hydrogen, nitrogen, oxygen, and the like to chemically combine with carbon around them, forming cracked gas such as carbon dioxide, methane, ethane, and the like, and being released. Finally, only a carbon mesh skeleton is left, constituting glassy carbon.
Glassy carbon also includes composite glassy carbon made by mixing a filler, a filling material, with a thermosetting resin, and firing the mixture. The composite glassy carbon can be further enhanced in properties such as lubricity by mixing a micro-sized or nano-sized filler.
As shown in
The glassy carbon sheet member 3c is formed separately by working one made as a glassy carbon sheet member into the same shape as the planar shape of the sliding face side of the substrate 3a. The thickness of the glassy carbon sheet member 3c in the present invention is about 100 times larger than the thickness of the diamond-like carbon film that is about 1 μm in Conventional Art 1. Thus, the glassy carbon sheet member 3c is characterized by being resistant to peeling compared to the coating of the diamond-like carbon film.
The adhesion layer 3b is made of a thermosetting resin, and is applied to the entire surface of the glassy carbon sheet member 3c.
The substrate 3a is made of silicon carbide (SiC) or carbon, and is worked to a predetermined inner diameter d1, outer diameter d2, and thickness t.
In the manufacturing of the rotating-side seal ring 3, first, the adhesion layer 3b made of a thermosetting resin is applied to the sliding face side of the substrate 3a worked into a predetermined shape, and the glassy carbon sheet member 3c is attached to the top of the adhesion layer 3b, so that the glassy carbon sheet member 3c is stuck on the substrate 3a via the adhesion layer 3b. Next, the adhesion layer 3b made of the thermosetting resin is heated to be cured. The curing of the thermosetting resin adhesion layer 3b causes the glassy carbon sheet member 3c to be stuck on the sliding face side of the substrate 3a and integrated with the substrate 3a.
In the curing of the adhesion layer 3b made of the thermosetting resin, the adhesion layer 3b is heated to about 300° C. to thermally cure the thermosetting resin. Depending on the type of the substrate 3a, the adhesion layer 3b may be heated until the thermosetting resin is carbonized as needed.
The sliding component in the first embodiment described above achieves the following outstanding effects.
(1) The presence of glassy carbon on the sliding face S of a seal ring prevents concentration of a deposit formation-causing substance and formation of deposits on the sliding face S. Thus, the sliding component improved in the sealing function of the sliding face S can be provided.
Glassy carbon, which is a material excellent in wear resistance, can prevent wear on the sliding face sliding in a fluid lubrication state from reaching a deep portion, improving the wear resistance and foreign matter-resistant properties of the sliding component.
Note that the foreign matter includes foreign matter from outside and deposits.
(2) Separately from the substrate 3a of the seal ring, the sheet member 3c of sheet-shaped glassy carbon is stuck on the side of the sliding face S of the substrate 3a. This configuration can facilitate the escape of gas generated from inside to prevent occurrence of cracks, compared to the case where an entire seal ring is made of glassy carbon as in Conventional Art 2. Further, the poor thermal conductivity of glassy carbon can be covered by the material of the substrate 3a.
Even a large seal ring that cannot be manufactured when an entire seal ring is made of glassy carbon can be manufactured.
Even when a surface texture is formed on the sliding face S, the surface texture can be formed on the sheet member 3c, and thus is easily formed.
(3) Separately from the substrate 3a of the seal ring, the sheet member 3c of sheet-shaped glassy carbon is stuck on the side of the sliding face S of the substrate 3a. This configuration enables provision of a glassy carbon region on the sliding face S without requiring an advanced technique, compared to the case where a glassy carbon modified region is formed on a sliding face of a sliding material as in Conventional Art 3.
The material of the substrate 3a is not limited to materials that allow formation of a glassy carbon modified region. Thus, the degree of freedom in material selection can be increased. For example, a low-cost material can be selected to reduce material cost. Alternatively, for example, a material with good thermal conductivity can be selected to provide a sliding component with high heat dispersion characteristics.
Even when a surface texture is formed on the sliding face S, the surface texture can be formed on the sheet member 3c, and thus is easily formed.
With reference to
The sliding component according to the second embodiment is different from that of the first embodiment in that a surface texture is provided on a sliding face, but in the other basic configuration, is identical to that of the first embodiment, and will not be redundantly described.
In
In
In
The shape of the dimples 10 may alternatively be oval, elliptic, or rectangular instead of being circular. The diameter and depth of the dimples 10 are determined in design depending on the specifications of the sliding component, that is, the diameter of the sliding face, sliding speed, the viscosity of a sealed fluid, and others. For example, the diameter of the dimples 10 is properly in a range of 50 μm to 200 μm, and the depth in a range of 0.1 μm to 100 μm. The radial arrangement of the dimples 10 is not limited to two rows, and may be three or more rows. The circumferential pitch of the dimples 10 is determined in design as appropriate.
The plurality of dimples 10 formed on the sliding face holds a sealed fluid entering as a hydrodynamic lubricating liquid film between the sliding face and the opposing sliding face. The individual dimples 10 can each be considered to constitute a Rayleigh step.
Specifically, in
The function of the Rayleigh steps will be described in detail below.
Positive pressure generation mechanisms formed of the dimples 10 hold the sealed fluid, and generate positive pressure (dynamic pressure), thereby increasing a fluid film between the sliding faces S, and improving lubrication performance.
The sliding component in the second embodiment described above achieves the following outstanding effects in addition to the effects of the first embodiment.
(1) The dimples 10 can be provided previously with a mold when the sheet member 3c is produced. Thus, the need to form the dimples 10 after the sheet member 3c is adhered to the substrate 3a can be eliminated, and the dimples 10 can be easily formed.
(2) Even when the produced sheet member 3c is worked on to form the dimples 10 previously before being stuck on the substrate 3a, the sheet shape allows the dimples 10 to be formed by blanking. Thus the dimples 10 can be relatively easily formed.
(3) Even when negative pressure is generated on the upstream side in the dimples 10, and the sealed fluid entering the sliding face S evaporates, causing a deposit formation-causing substance to be precipitated and formed, the presence of the glassy carbon sheet member 3c can prevent the deposition of precipitates on negative-pressure portions, and prevent the adhesion of deposits on the land R.
With reference to
The sliding component according to the third embodiment is different from that of the first embodiment in that a surface texture is provided on a sliding face, but in the other basic configuration, is identical to that of the first embodiment, and will not be redundantly described.
In
As shown in
Note that the shape of the spiral grooves 11 is not limited to the shape shown in
The width and depth of the spiral grooves 11 are determined in design depending on the specifications of the sliding component, that is, the diameter of the sliding face, sliding speed, the viscosity of a sealed fluid, and others.
When the rotating-side seal ring 3 rotates, the sealed fluid is taken into the spiral grooves 11 in minute quantities from the proximal ends 11a on the outer-peripheral side of the sliding face S, and fluid interposed between the sliding faces S tends to follow and move in the moving directions of the sliding faces S due to its viscosity. Consequently, there is negative pressure on the upstream side in the spiral grooves 11, and at the same time, positive pressure (dynamic pressure) is generated at the distal ends 11b(Rayleigh steps).
The function of the Rayleigh steps will be described in detail below.
Positive pressure generation mechanisms formed of the spiral grooves 11 introduce the sealed fluid into the spiral grooves 11 and generate positive pressure (dynamic pressure), thereby increasing a fluid film between the sliding faces S and thus improving lubrication performance.
The sliding component in the third embodiment described above achieves the following outstanding effects in addition to the effects of the first embodiment.
(1) The spiral grooves 11 can be provided previously with a mold when the sheet member 3c is produced. Thus, the need to form the spiral grooves 11 after the sheet member 3c is adhered to the substrate 3a can be eliminated, and the spiral grooves 11 can be easily formed.
(2) Even when the produced sheet member 3c is worked on to form the spiral grooves 11 previously before being stuck on the substrate 3a, the sheet shape allows the spiral grooves 11 to be formed by blanking. Thus the spiral grooves 11 can be relatively easily formed.
(3) Even when negative pressure is generated on the upstream side in the spiral grooves 11, and the sealed fluid entering the sliding face S evaporates, causing a deposit formation-causing substance to be precipitated and formed, the presence of the glassy carbon sheet member 3c can prevent the deposition of precipitates on negative-pressure portions, and prevent the adhesion of deposits on the land R.
With reference to
The sliding component according to the fourth embodiment is different from that of the first embodiment in that a surface texture is provided on a sliding face, but in the other basic configuration, is identical to that of the first embodiment, and will not be redundantly described.
In
As shown in
For example, when the diameter of the sliding face S is about 20 mm, and the sliding face width is about 2 mm, the width of each positive pressure generation groove 12a is 0.4 mm to 0.6 mm and the depth is some micrometers, and the width of each radial groove 13 (circumferential angle) is about 6° and the depth is some tens of micrometers.
In
When the rotating-side seal ring 3 rotates, a sealed fluid enters the positive pressure generation grooves 12a through the radial grooves 13, and fluid interposed between the sliding faces S tends to follow and move in the moving directions of the sliding faces S due to its viscosity. Consequently, there is negative pressure on the upstream side in the positive pressure generation grooves 12a, and at the same time, positive pressure (dynamic pressure) is generated at Rayleigh steps 12c at downstream ends.
The function of the Rayleigh steps will be described in detail below.
The Rayleigh step mechanisms 12 generate positive pressure (dynamic pressure), thereby increasing a fluid film between the sliding faces S and improving lubrication performance.
The sliding component in the fourth embodiment described above achieves the following outstanding effects in addition to the effects of the first embodiment.
(1) The Rayleigh step mechanisms 12 and the radial grooves 13 can be provided previously with a mold when the sheet member 3c is produced. Thus, the need to form the Rayleigh step mechanisms 12 and the radial grooves 13 after the sheet member 3c is adhered to the substrate 3a can be eliminated, and the Rayleigh step mechanisms 12 and the radial grooves 13 can be easily formed.
(2) Even when the produced sheet member 3c is worked on to form the Rayleigh step mechanisms 12 and the radial grooves 13 previously before being stuck on the substrate 3a, the sheet shape allows the radial grooves 13 to be formed by blanking, for example. Thus the radial grooves 13 can be relatively easily formed.
(3) Even when negative pressure is generated on the upstream side in the Rayleigh step mechanisms 12, and the sealed fluid entering the sliding face S evaporates, causing a deposit formation-causing substance to be precipitated and formed, the presence of the glassy carbon sheet member 3c can prevent the deposition of precipitates on negative-pressure portions, and prevent the adhesion of deposits on the land R.
Next, with reference to
In
When the rotating-side seal ring 3 relatively moves in the direction shown by the arrow, fluid interposed between the sliding faces of the rotating-side seal ring 3 and the stationary-side seal ring 5 tends to follow and move in the moving direction of the rotating-side seal ring 3 due to its viscosity. Consequently, at that time, dynamic pressure (positive pressure) as shown by broken lines is generated by the presence of the narrowed gap (step) 14.
In
When the rotating-side seal ring 3 relatively moves in the direction shown by the arrow, fluid interposed between the sliding faces of the rotating-side seal ring 3 and the stationary-side seal ring 5 tends to follow and move in the moving direction of the rotating-side seal ring 3 due to its viscosity. Consequently, at that time, dynamic pressure (negative pressure) as shown by broken lines is generated by the presence of the widened gap (step) 15.
Thus, negative pressure is generated on the upstream side of the surface texture formed of the dimples 10, the spiral grooves 11, the Rayleigh step mechanisms 12, or the like, and positive pressure is generated on the downstream side.
Although the embodiments of the present invention have been described above with reference to the drawings, a specific configuration thereof is not limited to these embodiments. Any changes and additions made without departing from the scope of the present invention are included in the present invention.
For example, the above embodiments have described the sliding component with an example where, of a pair of rotating and stationary seal rings in a mechanical seal device, the rotating seal ring includes a substrate, an adhesion layer on the sliding face side of the substrate, and a glassy carbon sheet member stuck on the substrate via the adhesion layer. The present invention is not limited to this. Alternatively, the stationary seal ring may include a substrate, an adhesion layer on the sliding face side of the substrate, and a glassy carbon sheet member stuck on the substrate via the adhesion layer.
Further, for example, the above embodiments have described the case where a high-pressure sealed fluid is present on the outer-peripheral side of a rotating seal ring and a stationary seal ring. The present invention is also applicable to the case where a high-pressure fluid is on the inner-peripheral side.
Further, for example, the above embodiments have described the thickness of the glassy carbon sheet member 3c as being about 100 times larger than the thickness of the diamond-like carbon film that is about 1 μm. This only shows a general indicator. The thickness of the glassy carbon sheet member 3c is determined in design, depending on the specifications of the sliding component such as the outer diameter, the inner diameter, and sliding speed.
Number | Date | Country | Kind |
---|---|---|---|
JP2016-159198 | Aug 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/028659 | 8/8/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/034197 | 2/22/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3383116 | Carter | May 1968 | A |
3527465 | Guinard | Sep 1970 | A |
3704019 | McHugh | Nov 1972 | A |
3782737 | Ludwig et al. | Jan 1974 | A |
4071253 | Heinen et al. | Jan 1978 | A |
4523764 | Albers et al. | Jun 1985 | A |
4889348 | Amundson | Dec 1989 | A |
5071141 | Lai et al. | Dec 1991 | A |
5092612 | Victor et al. | Mar 1992 | A |
5174584 | Lahrman | Dec 1992 | A |
5180173 | Kimura et al. | Jan 1993 | A |
5224714 | Kimura | Jul 1993 | A |
5447316 | Matsui | Sep 1995 | A |
5556111 | Sedy | Sep 1996 | A |
5558341 | McNickle et al. | Sep 1996 | A |
5769604 | Gardner et al. | Jun 1998 | A |
5834094 | Etsion et al. | Nov 1998 | A |
5947481 | Young | Sep 1999 | A |
5952080 | Etsion et al. | Sep 1999 | A |
6002100 | Etsion | Dec 1999 | A |
6046430 | Etsion | Apr 2000 | A |
6135458 | Fuse | Oct 2000 | A |
6152452 | Wang | Nov 2000 | A |
6213473 | Lebeck | Apr 2001 | B1 |
6446976 | Key et al. | Sep 2002 | B1 |
6692006 | Holder | Feb 2004 | B2 |
7258346 | Tejima | Aug 2007 | B2 |
7377518 | Lai | May 2008 | B2 |
7758051 | Roberts-Haritonov | Jul 2010 | B2 |
7931277 | Garrison | Apr 2011 | B2 |
8100405 | Kneeland et al. | Jan 2012 | B2 |
8342534 | Vasagar et al. | Jan 2013 | B2 |
8585060 | Oshii et al. | Nov 2013 | B2 |
9151390 | Hosoe | Oct 2015 | B2 |
9228660 | Hosoe | Jan 2016 | B2 |
9574667 | Takahashi et al. | Feb 2017 | B2 |
9772037 | Itadani et al. | Sep 2017 | B2 |
9958010 | Itadani | May 2018 | B2 |
10132411 | Hosoe et al. | Nov 2018 | B2 |
10337620 | Tokunaga et al. | Jul 2019 | B2 |
20020014743 | Zheng | Feb 2002 | A1 |
20050212217 | Tejima | Sep 2005 | A1 |
20050263963 | Lai | Dec 2005 | A1 |
20070228664 | Anand | Oct 2007 | A1 |
20070267820 | Martin | Nov 2007 | A1 |
20070275267 | Sabouni | Nov 2007 | A1 |
20070296156 | Yanagisawa et al. | Dec 2007 | A1 |
20080100001 | Flaherty | May 2008 | A1 |
20110215531 | Tokunaga et al. | Sep 2011 | A1 |
20110215535 | Vasagar | Sep 2011 | A1 |
20110305871 | Tabuchi | Dec 2011 | A1 |
20120217705 | Hosoe | Aug 2012 | A1 |
20130168928 | Schrufer | Jul 2013 | A1 |
20130209011 | Tokunaga | Aug 2013 | A1 |
20140159314 | Hosoe | Jun 2014 | A1 |
20140217676 | Hosoe et al. | Aug 2014 | A1 |
20140319776 | Theike | Oct 2014 | A1 |
20150115540 | Tokunaga | Apr 2015 | A1 |
20150167847 | Tokunaga | Jun 2015 | A1 |
20150345642 | Haas | Dec 2015 | A1 |
20160033045 | Itadani et al. | Feb 2016 | A1 |
20160097457 | Sun et al. | Apr 2016 | A1 |
20170261107 | Martin | Sep 2017 | A1 |
20180017163 | Hosoe et al. | Jan 2018 | A1 |
20180073394 | Tokunaga et al. | Mar 2018 | A1 |
20180112711 | Itadani | Apr 2018 | A1 |
20180128377 | Tokunaga et al. | May 2018 | A1 |
20180128378 | Tokunaga et al. | May 2018 | A1 |
20180135699 | Tokunaga et al. | May 2018 | A1 |
20180172162 | Tokunaga et al. | Jun 2018 | A1 |
20180195618 | Itadani et al. | Jul 2018 | A1 |
20180299015 | Itadani | Oct 2018 | A1 |
20190170257 | Hosoe et al. | Jun 2019 | A1 |
20190285115 | Negishi et al. | Sep 2019 | A1 |
20190301522 | Negishi et al. | Oct 2019 | A1 |
20200240470 | Sorgenti | Jul 2020 | A1 |
20200332901 | Imura | Oct 2020 | A1 |
20210048062 | Masumi et al. | Feb 2021 | A1 |
20210048106 | Imura et al. | Feb 2021 | A1 |
20210080009 | Kimura et al. | Mar 2021 | A1 |
20210116030 | Kimura et al. | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
1245552 | Feb 2000 | CN |
1401924 | Mar 2003 | CN |
101793169 | Aug 2010 | CN |
101861485 | Oct 2010 | CN |
103557334 | Feb 2014 | CN |
104321568 | Jan 2015 | CN |
104685273 | Jun 2015 | CN |
110770456 | Feb 2020 | CN |
3223703 | Jun 1982 | DE |
2754931 | Jul 2014 | EP |
3196516 | Jul 2017 | EP |
3117049 | Sep 2017 | EP |
3575621 | Dec 2019 | EP |
3575643 | Dec 2019 | EP |
3650722 | May 2020 | EP |
2263952 | Aug 1993 | GB |
S51-034974 | Mar 1976 | JP |
S52-143571 | Oct 1977 | JP |
S59-195253 | Dec 1984 | JP |
S59-195254 | Dec 1984 | JP |
S63-190975 | Aug 1988 | JP |
H02-136863 | Nov 1992 | JP |
H04-337165 | Nov 1992 | JP |
H05-60247 | Mar 1993 | JP |
H05-296248 | Nov 1993 | JP |
H05-90049 | Dec 1993 | JP |
H06-17941 | Jan 1994 | JP |
H06-117547 | Apr 1994 | JP |
H06-323442 | Nov 1994 | JP |
9-89119 | Mar 1997 | JP |
9-292034 | Nov 1997 | JP |
H10-281299 | Oct 1998 | JP |
H10-292867 | Nov 1998 | JP |
H11-287329 | Oct 1999 | JP |
3066367 | May 2000 | JP |
2003-343730 | Dec 2003 | JP |
2005-180652 | Jul 2005 | JP |
2005-315391 | Nov 2005 | JP |
2005-337503 | Dec 2005 | JP |
2006-77899 | Mar 2006 | JP |
2007-162045 | Jun 2007 | JP |
2008-106940 | May 2008 | JP |
2011-74931 | Apr 2011 | JP |
H06-105105 | Apr 2011 | JP |
2011-185292 | Sep 2011 | JP |
2012-2295 | Jan 2012 | JP |
2012-062534 | Mar 2012 | JP |
2014-529052 | Oct 2014 | JP |
2015-68330 | Apr 2015 | JP |
5693599 | Apr 2015 | JP |
2015063647 | Apr 2015 | JP |
2016-80090 | May 2016 | JP |
5960145 | Jul 2016 | JP |
WO 2006051702 | May 2006 | WO |
WO 2011115073 | Sep 2011 | WO |
WO-2012-046749 | Apr 2012 | WO |
WO 2013035503 | Mar 2013 | WO |
WO-2013-053411 | Apr 2013 | WO |
WO-2014-061544 | Apr 2014 | WO |
WO 2014174725 | Oct 2014 | WO |
WO 2016167262 | Oct 2016 | WO |
WO 2016186015 | Nov 2016 | WO |
WO 2016186019 | Nov 2016 | WO |
WO 2016186020 | Nov 2016 | WO |
WO 2016203878 | Dec 2016 | WO |
WO 2017002774 | Jan 2017 | WO |
WO 2017061406 | Apr 2017 | WO |
WO 2018092742 | May 2018 | WO |
WO 2018105505 | Jun 2018 | WO |
WO2018139231 | Aug 2018 | WO |
Entry |
---|
A Second Office Action dated Jul. 25, 2016 by the State Intellectual Property Office of China counterpart application No. 201380029125.0. |
First Notification of Reason for Refusal with Search Report dated Sep. 25, 2015 by the State Intellectual Property Office of China for Chinese counterpart application No. 201380029125.0. |
First Notification of Reason for Refusal with Search Report issued by the State Intellectual Property Office of China dated Aug. 24, 2015 for Chinese counterpart application No. 201380024836.9. |
First Notification of Reason for Refusal with Search Report issued by the State intellectual Property Office of China dated Aug. 26, 2015 for Chinese counterpart application No. 201380009242.0. |
Second Notification of Reason for Refusal with issued by the State Intellectual Property Office of China dated Feb. 5, 2016 for Chinese counterpart application No. 201380024836.9. |
First Office Action issued in Chinese Patent Appln. Serial No. 201980007372.8, dated Sep. 27, 2021, with English translation, 13 pages. |
First Office Action issued in Chinese Patent Appln. Serial No. 201980010219.0, dated Nov. 30, 2021, with English translation, 13 pages. |
International Preliminary Report on Patentability and Written Opinion issued in PCT/JP2013/070713, dated Feb. 10, 2015. |
International Search Report (ISR) dated Oct. 29, 2013, issued for International application No. PCT/JP2013/070713. |
International Search Report and Written Opinion issued in PCT/JP2013/070714, dated Oct. 29, 2013, with English translation, 14 pages. |
International Preliminary Report on Patentability issued in PCT/JP2013/070714, dated Feb. 10, 2015. |
International Search Report and Written Opinion issued in PCT/JP2019/003381, with English translation, dated Apr. 2, 2019, 20 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/003381, with English translation, dated Aug. 4, 2020, 12 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/000617, dated Apr. 10, 2019, with English translation, 21 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/000617, dated Jul. 14, 2020, with English translation, 13 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/003645, dated Mar. 24, 2020, with English translation, 21 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/003645, dated Aug, 10, 2021, with English translation, 11pages. |
International Search Report and Written Opinion issued in PCT/JP2020/003641, dated Mar. 31, 2020, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/003641, dated Aug, 10, 2021, with English translation, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/003643, dated Mar, 17, 2020, with English translation, 17 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/003643, dated Aug. 10, 2021, with English translation, 10 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/1003648, dated Mar. 10, 2020, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCTJP2020/003648, dated Aug. 10, 2021, with English translation, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/003647, dated Mar. 24, 2020, with English translation, 14 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/003647, dated Aug. 10, 2021, with English translation, 8 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/011926, dated Apr. 28, 2020, with English translational, 12 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/011926, dated Sep. 28, 2021, 4 pages. |
Korean Official Action issued in related Korean Patent Application Serial No. 10-2020-7019822, dated Oct. 26, 2021 with English translation (4 pages). |
European Search Report issued in related European Patent Application Serial No. 19738181.7, dated Sep. 13, 2021 (10 pages). |
European Search Report issued in related European Patent Application Serial No. 19748058.5, dated Oct. 8, 2021 (9 pages). |
Office Action issued in U.S. Appl. No. 16/964,943, dated Oct. 4, 2021, 19 pages. |
Korean Official Action issued in related Korean Patent Application Serial No. 10-2020-7022307, dated Nov. 26. 2021 with translation, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20190178386 A1 | Jun 2019 | US |