The present invention relates to a sliding component comprising a pair of sliding parts that rotate relative to each other, for example, sliding parts suitable for a mechanical seal in an automobile, general industrial machinery, or other seal fields.
As a sealing device for preventing leakage of a sealed fluid, in a sealing device, for example, a mechanical seal, composed of two parts configured to rotate relative to each other and to have their end faces on a planar surface sliding relative to each other, opposing conditions of “sealing” and “lubrication” must be compatible in order to maintain sealing performance fora long time. In particular, in recent years, there has been an increasing demand for a further friction reduction in order to reduce mechanical loss while preventing leakage of the sealed fluid for environmental measures and the like. As a technique of reducing friction, by generating a dynamic pressure between sliding surfaces by slidably rotating the sliding surfaces with a liquid film interposed therebetween, this can be achieved.
Conventionally, as a mechanical seal configured to generate a dynamic pressure between sliding surfaces by rotation, for example, a sealing device described in Patent Citation 1 is known. In a sliding surface of a mating ring, which is one of sliding parts, a plurality of dynamic pressure generating grooves for generating a dynamic pressure during rotation is provided. A sliding surface of a seal ring, which is the other of the sliding parts, is formed to be flat. When the sliding parts rotate relative to each other, a negative pressure is generated on the upstream side of the dynamic pressure generating grooves in a rotating direction, while a positive pressure is generated on the downstream side thereof, and the positive pressure is increased by a wedge effect of end face walls on the downstream side in the rotating direction of the dynamic pressure generating grooves. Thus, the positive pressure acts as a whole to obtain large buoyancy.
In the sealing device disclosed in the Patent Citation 1, since the positive pressure is generated between the sliding surfaces, the fluid flows out of the positive pressure portion to the outside of the sliding surfaces. This outflow of the fluid corresponds to leakage of a sealed fluid in the case of a seal. Therefore, some sealing devices have been developed in which fine grooves or the like are formed inside or outside the dynamic pressure generating groove to provide a pumping function, and at the time of starting the sliding component, directional fluid is caused to flow between sliding surfaces to reduce leakage (for example, see Patent Citation 2).
Patent Citation 1: JP 3066367 B1 (page 3, FIG. 1)
Patent Citation 2: JP 5960145 B2 (page 10, FIG. 4)
Meanwhile, also in a sliding component for high-pressure sealed fluid, further improvement of “sealing” and “lubrication” is required. In a sliding component in Patent Citation 2, as the sealed fluid becomes high pressure, a pumping action tends to unexpectedly become low even if the groove shape (defined by depth, width, length, angle, etc.) of the fine grooves for pumping is optimized, and leakage could not be sufficiently prevented while maintaining lubricity. Further, it is conceivable to generate a dynamic pressure by dynamic pressure generating grooves as in the sealing device in Patent Document 1, however, because the sealed fluid is at a high pressure, the depth of the dynamic pressure generating grooves needs to be low in order to obtain large buoyancy. In this case, the sealed fluid is not sufficiently supplied to the dynamic pressure generating grooves, causing poor lubrication, and lubricity could be thus deteriorated. As described above, according to the technology of any of the Patent Citations, in a sliding component for high-pressure sealed fluid, unfortunately, it is difficult to maintain so-called fluid lubrication by the function of the dynamic pressure generation grooves, thereby resulting in the fact that a sliding component with more leakage or high torque is provided.
The present invention has been made to solve the problems of the prior art, and its object is to provide a sliding component with less leakage of a high-pressure sealed fluid and low torque.
In order to solve the problems described above, a sliding component according to the present invention includes a first seal ring and a second seal ring that are opposite to each other and cause respective sliding surfaces thereof to slidably rotate relative to each other, to seal a sealed fluid present on a radially inner or outer side of the sliding surfaces of the first and second seal rings. In the sliding surface of the first seal ring and the seal ring, a plurality of dynamic pressure recesses is formed to be separately arranged in a circumferential direction, the dynamic pressure recesses generating a dynamic pressure by a relative sliding rotation and sliding between the first seal ring and the second seal ring. In the sliding surface of the second seal ring, a plurality of static pressure recesses is formed in the circumferential direction at positions where the static pressure recesses cooperate with the dynamic pressure recesses to enable the sealed fluid to flow from the static pressure recesses to the dynamic pressure recesses, the static pressure recesses being deeper than the dynamic pressure recesses. According to the aforesaid configuration, during the relative sliding rotation between the sliding surfaces of the first and second seal rings, the sealed fluid can be supplied from the static pressure recesses to the dynamic pressure recesses through an opposite portion or the vicinity of the opposite portion of the static pressure recesses deeper than the dynamic pressure recesses, so that the dynamic pressure can be reliably generated without poor lubrication. At this time, the dynamic pressure recesses mainly function to generate a dynamic pressure between the sliding surfaces to adjust a contact surface pressure between the sliding surfaces, and the static pressure recesses mainly function to supply the sealed fluid held therein to the side of the dynamic pressure recesses. Accordingly, the dynamic pressure is generated to such an extent that the first seal ring and the second seal ring do not completely float relative to each other, so that the contact surface pressure is reduced while the sliding surfaces are in contact with each other. Thus, a sliding component with less leakage of a high-pressure sealed fluid and low torque can be obtained.
Preferably, the plurality of the dynamic pressure recesses and the plurality of the static pressure recesses might at least overlap with each other in a radial direction. According to this configuration, during the relative sliding rotation between the sliding surfaces of the first and second seal rings, the sealed fluid can reliably flow through the opposite portion of the static pressure recesses deeper than the dynamic pressure recesses and be supplied from the static pressure recesses to the dynamic pressure recesses, so that the dynamic pressure can be reliably generated without poor lubrication.
Preferably, the dynamic pressure recesses might be open toward the radially inner or outer side where the sealed fluid is present. According to this configuration, the static pressure of the sealed fluid is applied to the dynamic pressure recesses, so that the dynamic pressure can be reliably generated without poor lubrication.
Preferably, each of the dynamic pressure recesses might have a strip shape. According to this configuration, the dynamic pressure recesses and the static pressure recesses can cooperate with each other to increase efficiency of the dynamic pressure generation and efficiency of the static pressure generation.
Preferably, each of the static pressure recesses might be a dimple. According to this configuration, the dynamic pressure recesses and the static pressure recesses can cooperate with each other to increase efficiency of the dynamic pressure generation and efficiency of the static pressure generation.
Preferably, each of the dynamic pressure recesses might have a strip shape extending in the circumferential direction in a plan view, and each of the static pressure recesses might be a dimple. According to this configuration, the dynamic pressure recesses and the static pressure recesses can cooperate with each other to increase efficiency of the dynamic pressure generation and efficiency of the static pressure generation.
Preferably, the dynamic pressure recesses might be arranged only on the radially inner or outer side where the sealed fluid is present. According to this configuration, during the relative sliding rotation between the first seal ring and the second seal ring, poor lubrication on the radially inner or outer side where the sealed fluid is present can be prevented.
Preferably, the dynamic pressure recesses might be arranged only in a region of one quarter or less of the sliding surface of the first seal ring on the radially inner or outer side where the sealed fluid is present. According to this configuration, during the relative sliding rotation between the first seal ring and the second seal ring, poor lubrication in the sliding surfaces on the radially inner or outer side where the sealed fluid is present can be prevented, and leakage of the sealed fluid can be reduced without generating excessive buoyancy.
Preferably, the static pressure recesses might be arranged in an entire region of the sliding surface of the second seal ring. According to this configuration, the static pressure recesses supply the sealed fluid to the opposite dynamic pressure recesses and hold the sealed fluid therein at locations where the static pressure recesses are not opposite the dynamic pressure recesses, thus making it unlikely to cause poor lubrication.
Preferably, the static pressure recesses might have a depth dimension larger than a maximum opening diameter dimension of the static pressure recesses in a plan view. According to this configuration, the function of the static pressure recesses supplying the sealed fluid to the opposite dynamic pressure recesses can be enhanced, and the function of the static pressure recesses holding the sealed fluid therein at locations where the static pressure recesses are not opposite the dynamic pressure recesses can be enhanced.
Preferably, the sealed fluid might be a high-pressure liquid of 0.1 MPa or more. According to the eleventh aspect, even when the sealed fluid is at a high pressure, the surface roughness of the sliding surface is reduced and the leakage is reduced.
Modes for implementing a sliding component according to the present invention will be described below based on embodiments.
A sliding component according to a first embodiment of the present invention will be described with reference to
The mechanical seal for general industrial machinery shown in
The seal ring 10 and the mating ring 20 are typically formed of SiC (regarded as hard material) or a combination of SiC (regarded as hard material) and carbon (regarded as soft material), but not limited thereto, and any sliding material can be applied as long as it is used as a sliding material for a mechanical seal. The SiC includes a sintered compact with boron, aluminum, carbon or the like as sintering aids, as well as a material composed of two or more phases having different components and compositions, for example, SiC in which graphite particles are dispersed, reaction-sintered SiC composed of SiC and Si, SiC—TiC, SiC—TiN, and the like. As carbon, carbon in which a carbonaceous material and a graphite material are mixed, as well as resin-molded carbon, sintered carbon, and the like, can be used. In addition to the sliding materials described above, metal materials, resin materials, surface modification materials (or coating materials), composite materials, and the like are also applicable.
As shown in
The recessed grooves 12 are each defined by a bottom 12A formed as a plane parallel to the sliding surface 11, radial walls 12B and 12C formed as wall surfaces perpendicular to the bottom 12A, and a circumferential wall 12D formed as a wall surface perpendicular to the bottom surface 12A and the radial walls 12B and 12C. Each of the recesses grooves 12 has an opening 12E which has a substantially rectangular shape when viewed from the side and is open in a radially outward direction, on the sealed fluid side. The recessed grooves 12 are formed as grooves which have a strip shape extending in a circumferential direction of the sliding surface 11 when viewed from the front in the axial direction. In addition, the recessed grooves 12 according to the present embodiment are formed by laser processing, but not limited to this, and may be formed by other methods.
Further, twelve recessed grooves 12 are arranged at equal intervals in the circumferential direction of the sliding surface 11. The number and interval of the recessed grooves 12 are not limited to this. However, if the number of the recessed grooves 12 is too large, the generated dynamic pressure is large, and if the number is too small, the change in dynamic pressure acting in the circumferential direction of the sliding surface 11 is large. Therefore, it is preferable that 6 to 24 recessed grooves 12 are arranged at equal intervals.
Further, the circumferential length of the recessed grooves 12 and the length (i.e., interval) between the recessed grooves 12, 12 adjacent to each other in the circumferential direction are substantially the same. Note that the circumferential length and interval of the recessed grooves 12 in the sliding surface 11 are not limited to this.
Further, the axial depth of the recessed grooves 12 is less than 5 μm, preferably 1 μm or more, and the radial length R12 of the recessed grooves 12 is one half or less, preferably one quarter or less, of the radial length R11 of the sliding surface 11 (see
As shown in
Further, the radial length w21 of the sliding surface 21 of the mating ring 20 is formed to be longer than the radial length w11 of the sliding surface 11 of the seal ring 10 (i.e., w11<w21) as shown in
The dimples 22 are formed in a semi-spheroidal shape having a circular shape (see
Further, the depth dimension h22 of the dimples 22 is formed to be larger than the maximum opening diameter dimension r22 of the dimples 22 when viewed from the front (i.e., r22<h22) as shown in
As shown in
Next, generation of dynamic pressure between the sliding surfaces 11 and 21 will be described hereinafter. As shown in
As described above, the cooperation between the recessed grooves 12 and the dimples 22 generates a dynamic pressure to such an extent that the seal ring 10 and the mating ring 20 do not completely float relative to each other. Thus, the sliding surfaces 11 and 21 are brought into mixed lubrication in which hydrodynamic lubrication and boundary lubrication are mixed, and are brought into a state of being partially in contact with each other. Therefore, while both sliding surfaces 11 and 21 are in contact with each other, the contact surface pressure is reduced, so that a sliding component with less leakage of the high-pressure sealed fluid and low torque can be obtained. Furthermore, the low torque allows the surface roughness of the sliding surfaces 11 and 21 to be reduced. Unlike the first embodiment, a conventional dynamic pressure generating groove generates a fluid film serving as fluid lubrication.
As a modification of the recessed grooves 12 according to the first embodiment, the radial walls 12B and 12C may not be perpendicular to the bottom 12A, and may, for example, intersect with the bottom 12A in an inclined state. In addition, the bottom 12A may not be parallel to the sliding surface 11, and may be, for example, an inclined surface. Furthermore, the bottom 12A may not be a flat surface, and may be, for example, a curved surface.
As a modification of the dimples 22 according to the first embodiment, the cross-sectional shape of the dimples 22 may be formed in a rectangular shape as shown in
Next, a sliding component according to a second embodiment of the present invention will be described with reference to
The sliding component according to the second embodiment will be described. As shown in
Further, as shown in
Further, as shown in
Further, as shown in
Further, as shown in
Further, as shown in
Further, as shown in
Note that the depth of the respective dynamic pressure recesses in
Next, a sliding component according to a third embodiment of the present invention will be described with reference to
The sliding component according to the third embodiment will be described. As shown in
Further, as shown in
Further, as shown in
Further, as shown in
Further, as shown in
Further, as shown in
Note that the axial depth of the respective static pressure recesses formed in the mating rings in
Although the embodiments according to the present invention have been described above with reference to the drawings, specific configurations are not limited to these embodiments, and changes and additions without departing from the scope of the present invention are also included in the present invention.
Further, in the embodiments described above, the case where the sliding component is a mechanical seal has been described as an example. However, the present invention is not to be construed as being limited to this, and without departing from the scope of the present invention, various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art.
For example, as a sliding component, a mechanical seal for general industrial machinery has been described as an example, however, other mechanical seals for a water pump, or the like may be used. In addition, a mechanical seal may be of an outside type.
Further, in the embodiments described above, an example in which the dynamic pressure recesses are provided in the seal ring, and the static pressure recesses are provided in the mating ring, however, the static pressure recesses may be provided in the seal ring, and the dynamic pressure recesses may be provided in the mating ring.
Further, although a mechanical seal has been described as an example of a sliding component, a sliding component other than a mechanical seal such as a sliding bearing may be applicable.
1 Rotating shaft
2 Sleeve
4 Housing
5 Seal cover
7 Bellows
10 Seal ring (First or Second seal ring)
11 Sliding surface
12 Recessed groove (dynamic pressure recess)
12A Bottom
12B, 12C Radial wall
12D Circumferential wall
12E Opening
20 Mating ring (Second or First seal ring)
21 Sliding surface
22 Dimple (static pressure recess)
210 to 810 Seal ring (sliding part)
211 to 811 Sliding surface
212 Recessed groove (dynamic pressure recess)
220 to 710 Mating ring (sliding part)
221 to 721 Sliding surface
222 Dimple (static pressure recess)
312 Spiral groove (dynamic pressure recess)
322 Dimple (static pressure recess)
412 Recessed groove (dynamic pressure recess)
422 Spiral groove (static pressure recess)
512 Rayleigh step (dynamic pressure recess)
522 Recessed groove (static pressure recess)
612 Rayleigh step (dynamic pressure recess)
622 Recessed groove (static pressure recess)
712 Recessed groove (dynamic pressure recess)
722 Recessed groove (static pressure recess)
812 Dimple (dynamic pressure recess)
Number | Date | Country | Kind |
---|---|---|---|
JP2018-003694 | Jan 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/000617 | 1/11/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/139107 | 7/18/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3383116 | Carter | May 1968 | A |
3527465 | Guinard | Sep 1970 | A |
3675935 | Ludwig | Jul 1972 | A |
3704019 | McHugh | Nov 1972 | A |
3782737 | Ludwig et al. | Jan 1974 | A |
4056478 | Capelli | Nov 1977 | A |
4071253 | Heinen et al. | Jan 1978 | A |
4523764 | Albers et al. | Jun 1985 | A |
4889348 | Amundson | Dec 1989 | A |
5071141 | Lai et al. | Dec 1991 | A |
5092612 | Victor et al. | Mar 1992 | A |
5174584 | Lahrman | Dec 1992 | A |
5180173 | Kimura et al. | Jan 1993 | A |
5224714 | Kimura | Jul 1993 | A |
5447316 | Matsui | Sep 1995 | A |
5556111 | Sedy | Sep 1996 | A |
5558341 | McNickle | Sep 1996 | A |
5769604 | Gardner et al. | Jun 1998 | A |
5834094 | Etsion et al. | Nov 1998 | A |
5947481 | Young | Sep 1999 | A |
5952080 | Etsion et al. | Sep 1999 | A |
6002100 | Etsion | Dec 1999 | A |
6046430 | Etsion | Apr 2000 | A |
6135458 | Fuse | Oct 2000 | A |
6152452 | Wang | Nov 2000 | A |
6213473 | Lebeck | Apr 2001 | B1 |
6446976 | Key et al. | Sep 2002 | B1 |
6692006 | Holder | Feb 2004 | B2 |
6726213 | Wang | Apr 2004 | B2 |
7258346 | Tejima | Aug 2007 | B2 |
7377518 | Lai | May 2008 | B2 |
7758051 | Roberts-Haritonov | Jul 2010 | B2 |
7931277 | Garrison | Apr 2011 | B2 |
8100405 | Kneeland et al. | Jan 2012 | B2 |
8342534 | Vasagar | Jan 2013 | B2 |
8585060 | Oshii et al. | Nov 2013 | B2 |
9151390 | Hosoe | Oct 2015 | B2 |
9169931 | Tokunaga | Oct 2015 | B2 |
9228660 | Hosoe | Jan 2016 | B2 |
9347566 | Tokunaga | May 2016 | B2 |
9353867 | Itadani et al. | May 2016 | B2 |
9494239 | Hosoe | Nov 2016 | B2 |
9512923 | Inoue et al. | Dec 2016 | B2 |
9556960 | Thelke et al. | Jan 2017 | B2 |
9574667 | Takahashi et al. | Feb 2017 | B2 |
9772037 | Itadani et al. | Sep 2017 | B2 |
9784372 | Iguchi | Oct 2017 | B2 |
9850953 | Tokunaga | Dec 2017 | B2 |
9863473 | Hosoe et al. | Jan 2018 | B2 |
9958010 | Itadani | May 2018 | B2 |
9982715 | Gorges et al. | May 2018 | B2 |
10054230 | Katori et al. | Aug 2018 | B2 |
10132411 | Hosoe et al. | Nov 2018 | B2 |
10337620 | Tokunaga et al. | Jul 2019 | B2 |
10443737 | Itadani | Oct 2019 | B2 |
10495228 | Itadani | Dec 2019 | B2 |
10865883 | Seki et al. | Dec 2020 | B2 |
11248706 | Imura | Feb 2022 | B2 |
11320052 | Imura et al. | May 2022 | B2 |
20020014743 | Zheng | Feb 2002 | A1 |
20020093141 | Wang | Jul 2002 | A1 |
20020158416 | Hosanna | Oct 2002 | A1 |
20040080112 | Tejima | Apr 2004 | A1 |
20050212217 | Tejima | Sep 2005 | A1 |
20050263963 | Lai | Dec 2005 | A1 |
20070228664 | Anand | Oct 2007 | A1 |
20070267820 | Martin | Nov 2007 | A1 |
20070275267 | Sabouni | Nov 2007 | A1 |
20070296156 | Yanagisawa et al. | Dec 2007 | A1 |
20080100001 | Flaherty | May 2008 | A1 |
20090200749 | Teshima | Aug 2009 | A1 |
20110215531 | Tokunaga et al. | Sep 2011 | A1 |
20110215535 | Vasagar | Sep 2011 | A1 |
20110305871 | Tabuchi | Dec 2011 | A1 |
20120018957 | Watanabe | Jan 2012 | A1 |
20120217705 | Hosoe | Aug 2012 | A1 |
20130168928 | Schr{umlaut over (f)}er et al. | Jul 2013 | A1 |
20130209011 | Tokunaga | Aug 2013 | A1 |
20140159314 | Hosoe | Jun 2014 | A1 |
20140197600 | Hosoe | Jul 2014 | A1 |
20140217676 | Hosoe et al. | Aug 2014 | A1 |
20140319776 | Theike et al. | Oct 2014 | A1 |
20150115540 | Tokunaga | Apr 2015 | A1 |
20150123350 | Itadani | May 2015 | A1 |
20150167847 | Tokunaga | Jun 2015 | A1 |
20150345642 | Haas | Dec 2015 | A1 |
20150377297 | Tokunaga et al. | Dec 2015 | A1 |
20160033045 | Itadani et al. | Feb 2016 | A1 |
20160097457 | Sun et al. | Apr 2016 | A1 |
20170241549 | Itadani | Aug 2017 | A1 |
20170261107 | Martin | Sep 2017 | A1 |
20170350407 | Yamamoto et al. | Dec 2017 | A1 |
20180017163 | Hosoe et al. | Jan 2018 | A1 |
20180073394 | Tokunaga et al. | Mar 2018 | A1 |
20180112711 | Itadani | Apr 2018 | A1 |
20180128377 | Tukunaga et al. | May 2018 | A1 |
20180128378 | Tokunaga et al. | May 2018 | A1 |
20180135699 | Tokunaga et al. | May 2018 | A1 |
20180172162 | Tokunaga et al. | Jun 2018 | A1 |
20180195618 | Itadani | Jul 2018 | A1 |
20180299015 | Itadani | Oct 2018 | A1 |
20190170257 | Hosoe et al. | Jun 2019 | A1 |
20190285115 | Negishi et al. | Sep 2019 | A1 |
20190301522 | Negishi et al. | Oct 2019 | A1 |
20190331162 | Negishi | Oct 2019 | A1 |
20200224768 | Imura | Jul 2020 | A1 |
20200240470 | Sorgenti | Jul 2020 | A1 |
20200332901 | Imura | Oct 2020 | A1 |
20210041026 | Imura | Feb 2021 | A1 |
20210048062 | Masumi et al. | Feb 2021 | A1 |
20210048106 | Imura et al. | Feb 2021 | A1 |
20210080009 | Kimura et al. | Mar 2021 | A1 |
20210116030 | Kimura et al. | Apr 2021 | A1 |
20210364034 | Okada | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
1245552 | Feb 2000 | CN |
2460801 | Nov 2001 | CN |
1401924 | Mar 2003 | CN |
101644333 | Feb 2010 | CN |
201496542 | Jun 2010 | CN |
101793169 | Aug 2010 | CN |
101861485 | Oct 2010 | CN |
203098871 | Jul 2013 | CN |
103557229 | Feb 2014 | CN |
103557334 | Feb 2014 | CN |
203641506 | Jun 2014 | CN |
104169622 | Nov 2014 | CN |
104321568 | Jan 2015 | CN |
104685273 | Jun 2015 | CN |
106029294 | Oct 2016 | CN |
205877184 | Jan 2017 | CN |
205877198 | Jan 2017 | CN |
106439023 | Feb 2017 | CN |
107489770 | Dec 2017 | CN |
110770456 | Feb 2020 | CN |
111656065 | Sep 2020 | CN |
3223703 | Jun 1982 | DE |
102008038396 | Feb 2010 | DE |
0369295 | Nov 1988 | EP |
0637706 | Aug 1993 | EP |
2138225 | Dec 2009 | EP |
2754931 | Jul 2014 | EP |
3196516 | Jul 2017 | EP |
3217049 | Sep 2017 | EP |
3396186 | Oct 2018 | EP |
3575621 | Dec 2019 | EP |
3575643 | Dec 2019 | EP |
3650722 | May 2020 | EP |
2342440 | Sep 1997 | FR |
2263952 | Aug 1993 | GB |
S51-034974 | Mar 1976 | JP |
S52-143571 | Oct 1977 | JP |
57163770 | Oct 1982 | JP |
S59-195253 | Dec 1984 | JP |
S59-195254 | Dec 1984 | JP |
S63-190975 | Aug 1988 | JP |
H02-236067 | Sep 1990 | JP |
H02-136863 | Nov 1990 | JP |
H04-50559 | Feb 1992 | JP |
H04-337165 | Nov 1992 | JP |
H05-60247 | Mar 1993 | JP |
H05-296248 | Nov 1993 | JP |
H05-90049 | Dec 1993 | JP |
H06-17941 | Jan 1994 | JP |
H06-117547 | Apr 1994 | JP |
H06-174107 | Jun 1994 | JP |
H06-323442 | Nov 1994 | JP |
H06-105105 | Dec 1994 | JP |
9-89119 | Mar 1997 | JP |
9-292034 | Nov 1997 | JP |
H10-281299 | Oct 1998 | JP |
H10-292867 | Nov 1998 | JP |
H11-287329 | Oct 1999 | JP |
3066367 | May 2000 | JP |
2001-12458 | Jan 2001 | JP |
2003-343730 | Dec 2003 | JP |
2005-180652 | Jul 2005 | JP |
2005-315391 | Nov 2005 | JP |
2005-337503 | Dec 2005 | JP |
2006-77899 | Mar 2006 | JP |
2006-90524 | Apr 2006 | JP |
2006-183702 | Jul 2006 | JP |
2007-162045 | Jun 2007 | JP |
2008-106940 | May 2008 | JP |
2011-74931 | Apr 2011 | JP |
2011-185292 | Sep 2011 | JP |
2012-2295 | Jan 2012 | JP |
2012-062534 | Mar 2012 | JP |
2012-122135 | Jun 2012 | JP |
2013-213545 | Oct 2013 | JP |
2014-529052 | Oct 2014 | JP |
2015-063647 | Apr 2015 | JP |
2015-68330 | Apr 2015 | JP |
5693599 | Apr 2015 | JP |
2016-80090 | May 2016 | JP |
5960145 | Jul 2016 | JP |
WO 2006051702 | May 2006 | WO |
WO 2011115073 | Sep 2011 | WO |
WO 2012046749 | Apr 2012 | WO |
WO 2013035503 | Mar 2013 | WO |
WO 2013053411 | Apr 2013 | WO |
WO2014061544 | Apr 2014 | WO |
WO2014148316 | Sep 2014 | WO |
WO2014148317 | Sep 2014 | WO |
WO 2014174725 | Oct 2014 | WO |
WO2015111707 | Jul 2015 | WO |
WO2016035860 | Mar 2016 | WO |
WO 2016167262 | Oct 2016 | WO |
WO 2016186015 | Nov 2016 | WO |
WO 2016186019 | Nov 2016 | WO |
WO 2016186020 | Nov 2016 | WO |
WO 2016203878 | Dec 2016 | WO |
WO 2017002774 | Jan 2017 | WO |
WO 2017061406 | Apr 2017 | WO |
WO 2018092742 | May 2018 | WO |
WO 2018105505 | Jun 2018 | WO |
WO2018139231 | Aug 2018 | WO |
Entry |
---|
A Second Office Action dated Jul. 25, 2016 by the State Intellectual Property Office of China counterpart application No. 201380029125.0. |
First Notification of Reason for Refusal with Search Report dated. Sep. 25, 2015 by the State Intellectual Property Office of China for Chinese counterpart application No. 201380029125.0. |
First Notification of Reason for Refusal with Search Report issued by the State Intellectual Property Office of China dated Aug. 24, 2015 for Chinese counterpart application No. 201380024836.9. |
First Notification of Reason for Refusal with Search Report issued by the State Intellectual Property Office of China dated Aug. 26, 2015 for Chinese counterpart application No. 201380009242.0. |
Second Notification of Reason for Refusal with issued by the State Intellectual Property Office of China dated Feb. 5, 2016 for Chinese counterpart application No. 201380024836.9. |
First Office Action issued in Chinese Patent Appln. Serial No. 2019800007372.8, dated Sep. 27, 2021, with English translation, 13 pages. |
International Preliminary Report on Patentability and Written Opinion issued in PCT/JP2013/070713, dated Feb. 10, 2015. |
International Search Report (ISR) dated Oct. 29, 2013, issued for International application No. PCT/JP2013/070713. |
International Search Report and Written Opinion issued in PCT/JP2013/070714, dated Oct. 29, 2013, with English translation, 14 pages. |
International Preliminary Report on Patentability issued in PCT/JP2013/070714, dated Feb. 10, 2015. |
International Search Report and Written Opinion issued in PCT/JP2019/003381, with English translation, dated Apr. 2, 2019, 20 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/003381, with English translation, dated Aug. 4, 2020, 12 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/003645, dated Mar. 24, 2020, with English translation, 21 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/003645, dated Aug. 10, 2021, with English translation, 11pages. |
International Search Report and Written Opinion issued in PCT/JP2020/003641, dated Mar. 31, 2020, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/003641, dated Aug. 10, 2021, with English translation, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/003643, dated Mar. 17, 2020, with English translation, 17 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/003643, dated Aug. 10, 2021, with English translation, 10 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/003648, dated Mar. 10, 2020, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/003648, dated Aug. 10, 2021, with English translation, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/003647, dated Mar. 24, 2020, with English translation, 14 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/003647, dated Aug. 10, 2021, with English translation, 8 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/003643, dated Apr. 28, 2020, with English translation, 12 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/011926, dated Sep. 28, 2021, 4 pages. |
Korean Official Action issued in related Korean Patent Application Serial No. 10-2020-7019822, dated Oct. 26, 2021 with English translation (4 pages). |
European Search Report issued in related European Patent Application Serial No. 19738181.7, dated Sep. 13, 2021 (10 pages). |
European Search Report issued in related European Patent Application Serial No. 19748058.5, dated Oct. 8, 2021 (9 pages). |
Office Action issued in U.S. Appl. No. 16/964,943, dated Oct. 4, 2021, 19 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/000617, dated Jul. 14, 2020, with English translation, 13 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/000617, dated Apr. 10, 2019, with English translation, 21 pages. |
First Office Action issued in Chinese Patent Appln. Serial No. 201980010219.0, dated Nov. 30, 2021, with English translation, 13 pages. |
Notice of Allowance issued in U.S. Appl. No. 16/964,943, dated Jan. 11, 2022, 8 pages. |
Korean Official Action issued in related Korean Patent Application Serial No. 10-2020-7022307, dated Nov. 26, 2021 with translation, 13 pages. |
Official Action issued in European Patent Application Serial No. 17841422.3, dated Feb. 15, 2022, 5 pages. |
Chinese Official Action issued in related Chinese Patent Application Serial No. 201980007372.8, dated May 26, 2022 with translation, 13 pages. |
European Search Report issued in related European Patent Application Serial No. 20752802.7, dated Oct. 11, 2022 (7 pages). |
European Search Report issued in related European Patent Application Serial No. 20752708, dated Oct. 4, 2022 (7 pages). |
European Search Report issued in related European Patent Application Serial No. 20752625, dated Oct. 4, 2022 (10 pages). |
European Search Report issued in related European Patent Application Serial No. 20752804, dated Oct. 11, 2022 (7 pages). |
European Search Report issued in related European Patent Application Serial No. 20752709, dated Oct. 11, 2022 (9 pages). |
Chinese Official Action issued in related Chinese Patent Application Serial No. 201980010219.0, dated Apr. 18, 2022 with translation, 17 pages. |
U.S. Appl. No. 16/964,943, filed Jul. 24, 2020, Imura et al. |
U.S. Appl. No. 17/424,847, filed Jul. 21, 2021, Hashimoto et al. |
U.S. Appl. No. 17/424,850, filed Jul. 21, 2021, Ou et al. |
U.S. Appl. No. 17/425,277, filed Jul. 22, 2021, Imura et al. |
U.S. Appl. No. 17/425,281, filed Jul. 22, 2021, Suzuki. |
U.S. Appl. No. 17/425,678, filed Jul. 23, 2021, Suzuki et al. |
U.S. Appl. No. 17/433,561, filed Aug. 24, 2021, Miyazaki et al. |
Second Office Action issued in Chinese Patent Appln. Serial No. 201980007372.8, dated May 26, 2022, with English translation, 13 pages. |
First Office Action issued in Chinese Patent Appln. Serial No. 202080010586.3, dated Aug. 8, 2022, with English translation, 15 pages. |
First Office Action issued in Chinese Patent Appln. Serial No. 202080010580.6, dated Aug. 2, 2022, with English translation, 12 pages. |
First Office Action issued in Chinese Patent Appln. Serial No. 202080010628.3, dated Aug. 2, 2022, with English translation, 15 pages. |
First Office Action issued in Chinese Patent Appln. Serial No. 202080010661.6, dated Jul. 19, 2022, with English translation, 15 pages. |
First Office Action issued in Chinese Patent Appln. Serial No. 202080011045.2, dated Jul. 18, 2022, with English translation, 10 pages. |
First Office Action issued in Chinese Patent Appln. Serial No. 202080018532.1, dated Aug. 24, 2022, with English translation, 14 pages. |
International Search Report and Written Opinion and International Preliminary Report on Patentability issued in PCT/JP2017/040830, dated Jan. 30, 2018, with English translations, 15 pages. |
Notice of Allowance issued in U.S. Appl. No. 16/322,811, dated Apr. 19, 2022, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20200332901 A1 | Oct 2020 | US |