The present invention relates to a sliding device, and more particularly to a sliding device for a material shaft.
A rotary processing machine is widely used in material coiling equipment for plastic film, metal foil, paper roll, steel roll and the like. The manufactured material is wound into a material roll, and the material roll is placed on a material discharging shaft for cutting. After that, the cut material is re-wound evenly on a winding shaft to form a material roll, thereby completing the cutting operation for the material. Then, the material roll on the winding shaft is removed and placed on a material receiving shaft for subsequent distribution and storage.
However, due to the social development in these days, the operators who operate machines are mostly women. Besides, the material is quite heavy. Therefore, when the uncut material roll is placed on the material discharging shaft, or when the material roll is removed from the winding shaft and the material roll is placed on the material receiving shaft, it is more laborious. In the process of dismounting or mounting the material roll, it is easy to cause physical injury to the operator. Accordingly, the inventor of the present invention has devoted himself based on his many years of practical experiences to solve these problems.
The primary object of the present invention is to provide a sliding device for a material shaft. The sliding device is simple in structure and convenient for installation, so that a material roll can be mounted or dismounted from the material shaft effortlessly.
In order to achieve the aforesaid object, the present invention provides a sliding device for a material shaft. The sliding device comprises a shaft body, a plurality of sliding units, and a plurality of spacers. An outer periphery of the shaft body has an annular sleeve surface. The annular sleeve surface is provided with a plurality of parallel accommodating grooves extending axially. Either side of an inner wall of each accommodating groove is recessed with a limiting groove extending axially. The sliding units are disposed in the accommodating grooves. Each sliding unit includes at least one limiting rod and two rollers. The limiting rod has a limiting portion extending in an axial direction of the shaft body. The limiting portion is located in the limiting groove. Two ends of the limiting portion are provided with pivot portions extending radially. The pivot portions are pivotally connected to the rollers, respectively. The rollers are located in each accommodating groove. A top surface of each roller extends out of the annular sleeve surface of the shaft body. Distal ends of each pivot portion have engaging ends. The spacers are disposed in the accommodating grooves. The spacers are spaced and arranged between the sliding units, respectively. Each spacer has a positioning portion. Two ends of the positioning portion are provided with abutting portions extending radially. Distal ends of each abutting portion have engaging ends. The engaging ends of the spacers lean against the engaging ends of the adjacent limiting rod to limit the rollers.
In the sliding device for a material shaft provided by the present invention, the top end of each roller extends out of the annular sleeve surface of the shaft body, so that when a material roll is sleeved on the shaft body, the inner wall of the material roll is in contact with the rollers. When the material shaft is rotated, the inner wall of the material roll rubs against the rollers to rotate the rollers so as to reduce the friction between the material roll and the shaft body. In this way, the material roll can be mounted on or dismounted from the shaft body effortlessly.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings.
The shaft body 10 is a cylinder having a predetermined length. The outer periphery of the shaft body 10 has an annular sleeve surface 11. The annular sleeve surface 11 is provided with a plurality of parallel accommodating grooves 12 extending axially. Either end of each accommodating groove 12 has an opening 121. Two sides of the inner wall of the accommodating groove 12 are recessed with limiting grooves 13 extending axially. Two ends of the shaft body 10 have connecting flanges 14. In this embodiment, the shaft body 10 may be one of a material discharging shaft or a material receiving shaft. The outer periphery of the shaft body 10 is provided with a plurality of slots 15 extending axially. In addition to reducing the weight of the shaft body 10, the slots 15 may be used for receiving other functional parts.
The sliding units 20 are disposed in the accommodating grooves 12 of the shaft body 10. Each sliding unit 20 includes a limiting rod 21 and two rollers 22. As shown in
The spacers 30 are disposed in the accommodating grooves 12 of the shaft body 10. The spacers 30 are spaced and arranged between the sliding units 20, respectively. As shown in
The stop rings 40 are disposed on the connecting flanges 14 of the shaft body 10, respectively. The stop rings 40 are attached to two sides of the shaft body 10 to close the openings 121 of the accommodating grooves 12, so that the sliding units 20 and the spacers 30 are confined in the accommodating grooves 12 of the shaft body 10. The stop rings 40 each have at least one screw hole 41. A bolt 42 is screwed to the screw hole 41 for fixing the stop rings 40 to the connecting flanges 14.
Although particular embodiments of the present invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the present invention. Accordingly, the present invention is not to be limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3006565 | Pelletier | Oct 1961 | A |
7128291 | Schanke | Oct 2006 | B1 |
8910899 | Miyamoto | Dec 2014 | B2 |
20130272766 | Tanaka | Oct 2013 | A1 |