The present disclosure relates to a sliding door arrangement with a sliding door, a rail system, comprising a first rail which guides a sliding motion of the door, and an attenuation and retraction device, which brakes the sliding motion of the door at a brake position in the vicinity of a door end position and retracts the door to the end position. The attenuation and retraction device is placed in the extension of the first rail and comprises a lid with a slot that is open, at an entry point, towards the first rail, and the door comprises a pin, a first end of which is slideably attached to the door, and a second end of which is devised to enter the slot to interact with the attenuation and retraction device when reaching the entry point.
Such an arrangement is disclosed in EP-2372064-A1, where a pin is urged against the rail by means of a spring. Alternatively, if the rail is placed under the door, the pin's own weight may be used to apply a sufficient pressure against the rail to ensure that the pin reliably snaps into the attenuation and retraction device slot.
A problem associated with sliding door arrangements of this kind is how to improve their operation while maintaining reliability.
An object of the present disclosure is therefore to improve the operation of an arrangement of the initially mentioned kind with maintained reliability. More specifically, in an arrangement of the initially mentioned kind, the attenuation and retraction device comprises a catching device which is arranged to interact with the pin, such that the pin reaches further into the slot after passing the entry point as the door approaches the end position. Thanks to this arrangement, the pin does not have to be urged against the rail, and still may be connected with the attenuation and retraction device in a reliable way when the braking position is reached. The pin does therefore not have to wear against the rail, which increases the life of the arrangement as a whole. Further, less friction and noise is produced when the pin does not have to be urged against the rail.
The catching device may be provided in the form of a ramp device in the lid slot. Then, the slot may have longitudinal edges and the ramp device may comprise a portion of the longitudinal edges that rise gradually further from the top surface of the lid, in the direction towards the rail, until reaching a tip of the edge in the vicinity of the entry point.
The pin may have a tip, intended to interact with the attenuation and retraction device, a wing portion, which is wider than the width of the slot in the attenuation and retraction device, and a waist portion, on the other side of the wing portion as seen from the tip, which is narrower than the width of the slot in the attenuation and retraction device, such that the wing portion can enter beneath the slot edges after passing the entry point towards the end position.
To further facilitate the interaction between the pin and the attenuation and retraction device, the wing portion may have a tapering part, tapering towards the attenuation and retraction device.
A spring may be used to urge the pin towards the retracted position.
The door may further comprise a wheel carried by a wheel holder, which is arranged to move the wheel between a retracted position and an extended position, and a transmission mechanism which interconnects the wheel holder and the pin such that a movement of the wheel, towards the extended position of the wheel, urges the pin towards the extended position. This steers the pin in such a way that it is reliably presented to the catching function of the attenuation and retraction device.
The wheel holder may be devised to urge the wheel, towards its extended position, against the rail, by means of a spring.
The transmission mechanism may be arranged to maintain a gap between the tip of the pin and the rail, e.g. in the range 2±0.5 mm.
The wheel holder and the pin may be mounted in a cassette.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
a shows a perspective view of a lid of an attenuation and retraction device;
b shows an enlarged portion of the lid of
a and 4b shows a pin for interaction with an attenuation and retraction device;
a shows a front view of a wheel cassette;
b shows an enlarged portion of
a shows a cross section of the door in
b shows an enlarged portion of the door of
The principles of the present invention and their advantages are best understood by referring to the illustrated embodiment depicted in
The present disclosure relates generally to a sliding door arrangement. Such an arrangement is typically used to delimit a niche or recess, which may be provided with shelves and may be used as a closet. Another use for a sliding door arrangement is as a room dividing device providing a semi-removable wall. Needless to say, there are other uses.
The sliding doors 11, 13 are mounted between a bottom rail 17 and a top rail 19. As will be shown later, each door may have two top wheels that are resiliently urged towards a track of the top rail 19 and two bottom wheels that rest on a track of the bottom rail 17. In the illustrated case, the arrangement is fitted between the ceiling and the floor of a room. As will be shown, the wheels are kept in place by wheel holders that are capable of moving the wheels between a more retracted position and a more extended position. The arrangement may also be used, for example, in an opening between two rooms, in which case the top rail 19 may instead be fitted under the top piece of the opening. A further possibility is to attach the top rail to the wall above such an opening.
A sliding door arrangement of this kind may be built in a room from the outset, or may be added later on. Particularly in the latter case, the arrangement may need be adjustable to some extent in order compensate for being used in a not perfectly rectangular opening. For instance, if the second wall 5 is slightly inclined, i.e. deviating slightly from the vertical, the second door 13 may be inclined too, such that its right edge runs parallel with the second wall, thereby avoiding any gap between the second door 13 and the second wall 5 at the rightmost position of the former. This can be done by adjusting either or both of the door's bottom wheels.
The upper left wheel 33 of the door 11 need not be placed at the side edge of the door, which means that the rail 19 which guides the door 11 need not extend all the way to the wall 3. Thereby, the attenuation and retraction device 29 can be placed in the elongation of the rail 19. The attenuation and retraction device 29 interacts with the tip of the pin 31, braking the door and closing the door as is well known per se. An example of the operation of an attenuation and retraction device is shown in EP-2372064-A1 and EP-2372066-A1. It has been suggested to urge the pin 31 against the rail 19 to ensure that the pin snaps into the slot of the attenuation and retraction device.
In the present disclosure, the attenuation and retraction device is instead devised with a catching function that positions the tip of the pin 31 in the attenuation and retraction device 29 in such a way that proper interaction is ensured.
The lid 35 of the attenuation and retraction device is shown in
In order to accomplish the catching function, the lid 35 comprises a catching device in the form of a ramp portion 41 which is arranged to interact with the pin 31. In the ramp portion 41, which is shown enlarged in
A pin 31 that is devised to interact with an attenuation and retraction device of this kind is illustrated in
The pin 31 has a tip 47 that is intended to connect to the features in the interior of the attenuation and retraction device that provides the braking/closing function, such as described in EP-2372054-A1.
The portion 49 at the opposite end of the pin as seen from the tip 47 is arranged to be slideably fitted to the door, typically to a wheel cassette that is attached to the door. This may be arranged by providing an opening in the cassette that has a similar cross section as the corresponding portion of the pin 31. As will be described, a stop that prevents the pin from leaving the door, and a spring that pulls the pin 31 to an innermost position may be provided.
The pin 31 further has a wing portion 51 that is adapted to interact with the ramp portion 41 of the attenuation and retraction device lid 35. The portion below the wing portion 51 may be defined as a waist portion 53. The width of the wing portion 51 is wider than the width of slot 37 in the lid, but the width of the waist portion 53 is not. Therefore, the tips 45 (
To further improve the catching function, the pin 31 can be devised with a wing portion 51 where the wings, which extend laterally with regard to travelling direction of the door, have a tapered portion 55 at the edge that faces the attenuation and retraction device. The wings thus taper upwards, as illustrated in
Additionally, the front end 57 of the pin 31 at the waist portion can be tapering in the direction facing the attenuation and retraction device, such that the waist portion is more easily fitted in between the slot edges.
It should be noted that a ramp portion could be devised differently. For instance, the slot of the lid could be flat, and a ramp portion could be devised e.g. at one side of the slot, interacting with a portion protruding from the pin laterally with regard to the slot. This would also provide a catching function on the lid. Another way to accomplish a catching function could be to use a magnet in the attenuation and retraction device attracting a ferromagnetic pin, or vice versa.
a shows a front view of a wheel cassette 59 for a door. The cassette which will be described in greater detail later includes the wheel 33 which may be spring loaded and the pin 31. The cassette may be produced as a component that can be fitted to different varieties of doors, e.g. different door material, sizes etc. However, it would also be conceivable to include the corresponding components directly in the door.
b shows an enlarged portion of
The gap is also shown in
As is shown, the wheel 33 is urged against the rail, and the pin 31 is in a relatively retracted position. As is more clearly shown in the enlarged
As is shown in the cut-out in
Other ways of accomplishing the transmission function are conceivable, e.g. providing the abutment 75 as a cam surface, using cogwheels, etc.
The present disclosure is not restricted to the above described examples and may be altered and varied in different ways within the scope of the appended claims. For instance, while the above embodiments show a top-wheel arrangement, where the wheel runs on a rail above the door and is urged against this rail by a torsional spring, bottom wheel arrangements are also possible. If so, the torsional spring is replaced by an adjustment mechanism that e.g. by means of a screw allows the end user to adjust the extent of the wheel extension of the door, e.g. in the way illustrated in aforementioned EP-2372064-A1. A transmission mechanism as illustrated above may nevertheless be provided to ensure that the pin is adjusted corresponding to the adjustment of the wheel.
The above illustrated function where the position of the pin is adjusted in accordance with the adjustment of the wheel may also be used together with attenuation and retraction devices that do not have a special catching function to pull the pin out. For instance, by providing a slightly raised attenuation and retraction device where the functions intended to interact with the tip of the pin are located slightly higher than the point where the rail ends, reliable interaction can be ensured with an accurate positioning of the pin tip close to the rail.
Although a system with two rail tracks, and correspondingly an attenuation and retraction device with two slots are shown above, more or less tracks could be used. Instead of a compression spring as shown in
Although the invention has been described with reference to specific embodiments, these descriptions are not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention, will become apparent to persons skilled in the art upon reference to the description of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed might be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
It is therefore contemplated that the claims will cover any such modifications or embodiments that fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
13163929.6 | Apr 2013 | EP | regional |
The present application is a nationalization under 35 U.S.C. §371 of International Application No. PCT/EP2014/056894 filed under the PCT, having an international filing date of Apr. 7, 2014, which claims priority to European Patent Application No. EP 13163929.6, having a filing date of Apr. 16, 2013.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/056894 | 4/7/2014 | WO | 00 |