This application is the U.S. National Phase of and claims priority to International Patent Application No. PCT/JP2015/054075, International Filing Date Feb. 16, 2015, entitled Sliding-Door Closer Set; which claims benefit of Japanese Application No. JP2014-038193 filed Feb. 28, 2014; both of which are incorporated herein by reference in their entireties.
The present invention relates to a sliding door closer set for pulling a sliding door in at least one direction of a door leading edge and a door trailing edge, and more particularly relates to a door pocket type sliding door closer set in which a sliding door is stored in a door pocket.
A sliding door closer set comprises a rail mounted at the top of a frame of a building; a closer capable of moving along the rail; and a trigger mounted to a predetermined position on the rail (for example, see Patent Document 1: JP 5285679 B). A sliding door is hung from the closer. When the sliding door is moved to the predetermined position at the door leading edge side and/or the door trailing edge side, the closer engages with the trigger, and the closer operates. The closer pulls the sliding door in at least one direction of the door leading edge and the door trailing edge. The dynamic force to pull the sliding door by the closer is an elastic force of a spring such as a coil spring provided inside the closer. A damper is incorporated in the closer such that the sliding door opens and closes slowly and quietly.
Sliding door closer sets are used in various settings. For example, in hotels, hospitals, residences, and the like, door pocket type sliding doors which store a sliding door in a door pocket when the sliding door is opened are used, and in some cases, a sliding door closer set is used for this door pocket type sliding door. In this case, a trigger is arranged inside the door pocket in order to pull the sliding door into the door pocket.
However, because the trigger is arranged inside the door pocket, if a mistake is made with the mounting position of the trigger due to a construction error, or if the trigger is mounted at an incline, the trigger position or incline cannot be corrected without demolishing the door pocket, which is a problem. If the door pocket is embedded in a wall, the wall may even have to be demolished. There are some examples in which the trigger is not arranged inside the door pocket in order to avoid construction errors at actual construction sites. However, if the trigger is not arranged inside the door pocket, the sliding door cannot be pulled into the door pocket.
Therefore, it is an object of the present invention to provide a sliding door closer set in which the position of a trigger arranged inside a door pocket can be adjusted from outside of the door pocket.
In order to solve the above-mentioned problem, according to one aspect of the present invention, there is provided a sliding door closer set comprising a rail arranged partially inside a door pocket; a closer hanging a sliding door and being capable of moving along the rail; and a trigger arranged inside the door pocket; wherein the sliding door is pulled into the door pocket as a result of engagement between the trigger and the closer, which has moved to a predetermined position on the rail; and the sliding door closer set further comprises a trigger integrated plate mounted to the rail outside the door pocket and integrally connected to the trigger arranged inside the door pocket.
According to a preferable aspect of the present invention, a guide unit for guiding the trigger integrated plate is formed in the rail such that the trigger integrated plate can be inserted into and removed from an inner rail.
According to a more preferable aspect of the present invention, the rail comprises an outer rail located outside the door pocket and an inner rail located inside the door pocket; and the trigger integrated plate straddles a boundary line between the outer rail and the inner rail.
According to one aspect of the present invention, the position of the trigger arranged inside the door pocket can be adjusted from outside of the door pocket.
According to the preferable aspect of the present invention, hanging down of the trigger integrated plate at the rail inside the door pocket can be prevented. Moreover, because the trigger can be removed to outside of the door pocket, a maintenance and inspection of the trigger can be performed.
According to the more preferable aspect of the present invention, a centering operation to match the center line of the outer rail with the center line of the inner rail is simplified.
A sliding door closer set according to an embodiment of the present invention is described below based on the attached drawings. The sliding door closer set according to the present embodiment is assembled with a door pocket type sliding door.
As shown in
As shown in
The closer 6 according to the present embodiment is a dual type closer 6 which pulls the sliding door 1 in both the door leading edge direction and the door trailing edge direction. Namely, when the sliding door 1 is moved to a predetermined position in the door leading edge direction by human hands, the closer 6 automatically pulls the sliding door 1 to a closed position (a position where the sliding door 1 abuts a vertical frame). Moreover, when the sliding door 1 is moved to a predetermined position in the door trailing edge direction by human hands, the closer 6 automatically pulls the sliding door 1 to an opened position (a position where the sliding door 1 is stored inside the door pocket 2). A damper for opening and closing the sliding door 1 slowly and quietly is incorporated in the closer 6.
According to the present embodiment, a door leading edge side trigger 7 and a door trailing edge side trigger 8 are provided. The door leading edge side trigger 7 is for pulling the sliding door 1 in the door leading edge direction. The door trailing edge side trigger 8 is for pulling the sliding door 1 into the door pocket 2. The door leading edge side trigger 7 is arranged at the outer rail 4a. The door trailing edge side trigger 8 is arranged at the inner rail 4b inside the door pocket 2. The trigger 8 is integrally connected to the trigger integrated plate 10.
Each constituent element of the sliding door closer set is described below in order.
The trigger integrated plate 10 is formed in a long and narrow plate shape in the length direction of the rail 4. The above-mentioned through hole 10a is machined in one end part in the length direction of the trigger integrated plate 10, and the trigger 8 is connected to this through hole 10a. A plurality of mounting holes 10c are machined in the other end part (a mounting part 10b) in the length direction of the trigger integrated plate 10. The mounting part 10b of the trigger integrated plate 10 is mounted to the outer rail 4a by a fastening member 21 (see
As shown in
As shown in
The closer 6 comprises a long and narrow base 30 in the length direction of the rail 4, a first slider assembly 31 incorporated so as to be slidable in the length direction of the base 30, a second slider assembly 32 incorporated so as to be slidable in the length direction of the base 30, and a damper assembly 33 arranged between the first slider assembly 31 and the second slider assembly 32. The first slider assembly 31 generates a pulling force to pull the sliding door 1 in the door trailing edge direction. The second slider assembly 32 generates a pulling force to pull the sliding door 1 in the door leading edge direction. The damper assembly 33 generates a damping force such that the sliding door 1 is pulled slowly and quietly. The structures of the first slider assembly 31, the second slider assembly 32, and the damper assembly 33 are described below. The closer 6 is covered by a cover 34. Slits 34a, 34b for receiving the door leading edge side trigger 7 and the door trailing edge side trigger 8 are formed in the cover 34.
The method for installing the sliding door closer set according to the present embodiment is described with reference to
Next, the trigger integrated plate 10 to which the trigger 8 is connected is prepared. The trigger 8 may be connected in advance to the trigger integrated plate 10, or the trigger 8 may be fixed to the trigger integrated plate 10 by being caulked or screwed at a construction site. Next, the trigger integrated plate 10 is inserted into the guide unit 15 of the outer rail 4a. Note that the outer rail 4a is omitted in
Next, as shown in
Next, as shown in
According to the sliding door closer set of the present embodiment, the position of the trigger 8 arranged inside the door pocket 2 can be adjusted from outside of the door pocket 2, and therefore the position of the trigger 8 can be adjusted without demolishing the door pocket 2. Accordingly, the risk of having to demolish the door pocket 2 in order to adjust the position of the trigger 8 can be eliminated.
Moreover, even if a problem occurs with the trigger 8 or closer 6 after the sliding door closer set has been assembled, the trigger 8 and closer 6 can be removed by moving the trigger 8 and closer 6 to the outer rail 4a and removing the outer rail 4a from the upper frame. Therefore, maintenance and inspection of the trigger 8 and closer 6 can be easily performed.
Furthermore, because the trigger 8 can be arranged inside the door pocket 2 from outside of the door pocket 2, the sliding door closer set can be later assembled to an existing door pocket type sliding door 1.
One example of a structure of the closer 6 is as follows.
As shown in
The malfunction prevention cam 44 is provided in order to return the first slider assembly 31 to the lock position. When the first slider assembly 31 is away from the lock position due to malfunction, the trigger catcher 42 cannot capture the door trailing edge side trigger 8. Even in such a case, the malfunction prevention cam 44 captures the door trailing edge side trigger 8, and therefore the first slider assembly 31 can be returned to the lock position.
Similar to the first slider assembly 31, the second slider assembly 32 comprises a second slider 41, a trigger catcher 42, a trigger pusher 43, a malfunction prevention cam 44, and a pulling coil spring 48. The structure of each component is the same as the structure of each component of the first slider assembly 31, and therefore is provided with the same reference numeral, and explanations thereof are omitted.
As shown in
When the first slider assembly 31 slides with respect to the base 30, the space between the damper base 35 and the first slider assembly 31 reduces, and the first linear damper 33a generates a damping force. When the first slider assembly 31 abuts the damper base 35, the engagement between the damper lock 36a for the first slider and the base 30 is released. The damper base 35 slides together with the first slider assembly 31, the space between the second slider assembly 32 and the damper base 35 is reduced, and the second linear damper 33b generates a damping force. In other words, when the first slider assembly 31 slides with respect to the base 30, initially the first linear damper 33a operates, and then next, the second linear damper 33b operates. When the second slider assembly 32 slides with respect to the base 30, opposite of the above description, initially the second linear damper 33b operates, and then next, the first linear damper 33a operates.
Note that the present invention is not limited to the above-mentioned embodiment, but may be modified in various embodiments without departing from the scope of the present invention.
In the above-mentioned embodiment, an example of a dual type closer which pulls a sliding door in both the door leading edge direction and the door trailing edge direction was described, but a single type closer that pulls a sliding door in only one of either the door leading edge direction or the door trailing edge direction can be used. The structure of the closer of the above-mentioned embodiment is one example, and closers of other structures can be used as long as the closer is capable of pulling the sliding door in at least one of the door leading edge direction and the door trailing edge direction.
In the above-mentioned embodiment, the boundary line between the inner rail and the outer rail is made to match with an end part in the door leading edge direction of the door pocket, but the boundary line may also be shifted from the end part in the door leading edge direction of the door pocket.
In the above-mentioned embodiment, the trigger integrated plate is mounted to the outer rail, but the inner rail may be extended to the outside of the door pocket, and then the trigger integrated plate may be mounted to the extended portion of the inner rail outside the door pocket.
In the above-mentioned embodiment, the inner rail and outer rail are separate from each other, but the inner rail and the outer rail may also be integrated.
In the above-mentioned embodiment, the trigger integrated plate was mounted to the rail by a screw, but in place of a screw, a rivet which can be caulked and fixed, a pin which can be caulked and fixed, a snap fit design which uses the elasticity of projection to fit and secure a concave part provided on a component into a recess part on the receiving side, an adhesive, or the like can be used as a fastening member.
The present specification is based on Japanese Patent Application No. 2014-038193 filed on Feb. 28, 2014. The entire content thereof is incorporated herein.
Number | Date | Country | Kind |
---|---|---|---|
2014-038193 | Feb 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/054075 | 2/16/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/129494 | 9/3/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8151413 | Iwaki | Apr 2012 | B2 |
8726574 | Iwaki | May 2014 | B2 |
8793839 | Iwaki | Aug 2014 | B2 |
20110099909 | Stommel | May 2011 | A1 |
20130160240 | Kenny | Jun 2013 | A1 |
20130219657 | Iwaki | Aug 2013 | A1 |
20170067277 | Janzen | Mar 2017 | A1 |
20170130501 | Svara | May 2017 | A1 |
Number | Date | Country |
---|---|---|
2913553 | Jun 2007 | CN |
10 2011 075 778 | Jun 2012 | DE |
2961245 | Dec 2011 | FR |
2006-169723 | Jun 2006 | JP |
2013-049946 | Mar 2013 | JP |
5285679 | Sep 2013 | JP |
2014-025237 | Feb 2014 | JP |
Entry |
---|
SIPO Examiner, First Office Action issued in Chinese Patent Application No. 201580003256.0 (with translation). |
WIPO, Japan International Search Authority, International Search Report (with translation) and Written Opinion dated May 12, 2015 in International Patent Application No. PCT/JP2015/054075, 6 pages. |
EPO, Supplementary European Search Report dated Oct. 26, 2017 in corresponding EP Patent Application No. EP15754654.0, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20160369547 A1 | Dec 2016 | US |