This application claims priority to European Patent Application EP 21 205 101.5 filed on Oct. 27, 2021, the entire contents of which are hereby incorporated in full by this reference.
The invention relates to a sliding door roller fitting, suitable for the parallel setting out of a vertical sliding door, which is guided displaceably along a horizontal running rail, in a setting-out direction extending at a right angle to the sliding door plane, and also to an associated sliding door arrangement having at least one sliding door which can be set out parallel.
Such sliding door roller fittings and sliding door arrangements are sufficiently well known and generally have a complicated construction with many movable individual parts.
Against this background, the object on which the present invention is based is to specify a sliding door roller fitting which has as few individual parts as possible and is constructed in as simple a manner as possible. In particular, the sliding door roller fitting is intended to prevent lowering or lifting of the sliding door during the setting-out movement.
This object is achieved according to the invention by a sliding door roller fitting, comprising: a tilting lever having a long arm and a short arm which is angled, in particular at a right angle, thereto, wherein the long arm has, on its inner side facing the short arm, a freely rotatably mounted running roller which, on the roller side opposite the short arm, projects beyond the long arm in order to roll along a running rail, and wherein the short arm has an outwardly curved outer side facing away from the running roller; and a (sliding door-side) bearing body which is to be fastened to the sliding door and on which the tilting lever is held so as to be tiltable between two end positions about a tilting axis parallel to a running roller tangent, wherein the bearing body has a planar bearing surface which extends horizontally in the setting-out direction in the mounting position of the bearing body, wherein the short arm of the tilting lever bears by its curved outer side against the bearing surface and rolls thereon during tilting of the tilting lever, and wherein the bearing body has two driving stops between which the tilting lever, in particular the short arm, is arranged in order to be driven along bidirectionally in the setting-out direction by the bearing body.
According to the invention, the curved outer surface rolls on the horizontal bearing surface during the tilting movement.
With very particular preference, the curved outer side is cylindrical and lies on a radius of curvature whose centre point is provided by the running roller tangent of the rolling point, which projects furthest beyond the long arm, of the running roller. The respective rolling contact always lies vertically above the running rail and, by virtue of the radius of curvature, there occurs no lowering or lifting of the sliding door. Consequently, the force required for transversely moving the sliding door is very low, even in the case of heavy sliding doors.
If the tilting lever is in a middle position between its two end positions, the axis of rotation of the running roller preferably extends parallel to the setting-out direction, that is to say horizontally in the mounting position of the sliding door roller fitting.
The tilting lever is preferably L-shaped with a short arm angled on one side, but can alternatively, for example, also be T-shaped with two short arms angled on both sides.
In a particularly preferred embodiment, the two ends, which point in the setting-out direction, of the short arm of the tilting lever are rounded and mounted so as to be tiltable between and on the two driving stops. Here, the rounded ends and the driving stops are formed from material whose friction is minimized as far as possible.
The two end positions of the tilting lever are preferably defined by end stops of the bearing body against which at least one of the two arms of the tilting lever bears in each case in the two end positions.
The bearing body preferably has a bearing cavity in which the short arm of the tilting lever is tiltably mounted. The bearing cavity can have the bearing surface, the driving stops and optionally also end stops against which the short arm of the tilting lever bears in each case in the two end positions.
At least on one side of the running roller, in particular on both sides of the running roller, the bearing body particularly preferably has an axle pin which is mounted so as to be rotatable in the bearing body about an axis of rotation extending parallel to the tilting axis, wherein the pivoting movement of the tilting lever and the rotation of the axle pin are movement-coupled to one another, in particular by means of a lever mechanism or toothed wheel mechanism. For this purpose, the axle pin can, for example, have a radial pivoting lever on which the tilting lever, in particular the long arm, acts eccentrically. The axle pin serves for synchronizing the tilting lever movements of two adjacent sliding door roller fittings.
In an advantageous invention variant, the bearing body is formed from two bearing body halves which are assembled in the axial direction of the tilting axis of the tilting lever, in particular are plugged one into the other, and which each have mutually facing bearing cavities in which the short arm of the tilting lever is tiltably mounted. The two bearing body halves can be arranged and thus held together in a sliding door-side mounting housing from which the rolling side of the running roller projects.
With particular preference, the bearing body is guided displaceably in a sliding door-side mounting housing at a right angle to the bearing surface. An adjusting screw which is supported, on the one hand, on the bearing body and, on the other hand, on the mounting housing can be used to set how far the bearing body can be inserted into the mounting housing. The sliding door can thus be adjusted in terms of height by way of the adjusting screw.
A wedge element having an end-side wedge surface which, in the mounted state, is arranged laterally in front of an end side of the sliding door is preferably fastened to the sliding door roller fitting.
The invention finally also relates to a sliding door arrangement, comprising: at least one stationary wall 40; and at least one sliding door 6a which can be shifted parallel to the stationary wall 40 and is guided displaceably in a horizontal lower and a horizontal upper running rail by means of at least two lower and two upper sliding door roller fittings designed as above whose bearing bodies are each fastened to the sliding door 6a and whose running rollers are each guided in the respective running rails; wherein the sliding door 6a can be set out parallel in a horizontal setting-out direction, which extends at a right angle to the sliding door plane, between a setting-out position, in which the tilting lever is tilted into the one end position, and a setting-out position, in which the tilting lever is tilted into the other end position, and wherein, if the sliding door 6a is in its one setting-out position, the sliding door 6a abuts the stationary wall 40 in the setting-out direction, in particular in a sealed manner, or is flush with the stationary wall 40, in particular in a sealed manner, and, if the sliding door 6a is in its other setting-out position, is spaced apart from the stationary wall 40 in the setting-out direction to such an extent that it can be slid past the stationary wall 40.
An essential advantage of the sliding door arrangement according to the invention is that the sliding door when moved in the setting-out direction can be closed in a sealed manner by means of a seal which is present between the stationary wall or door fold and the sliding door.
The invention finally also relates to a sliding door arrangement, comprising: at least two parallel horizontal, lower running rails and at least two parallel horizontal, upper running rails; at least one first sliding door which is guided displaceably in the front running rail of the two lower running rails and in the front running rail of the two upper running rails by means of at least two lower and two upper sliding door roller fittings; and at least one second sliding door which is guided displaceably in the rear running rail of the two lower running rails and in the rear running rail of the two upper running rails by means of at least two lower and two upper sliding door roller fittings; wherein at least one of the first and second sliding doors is guided displaceably by means of at least two lower and two upper sliding door roller fittings designed as above whose bearing bodies are each fastened to the at least one sliding door and whose running rollers are each guided in the respective running rails, wherein the at least one sliding door can be set out parallel in a horizontal setting-out direction, which extends at a right angle to the sliding door plane, between a setting-out position, in which the tilting lever is tilted into the one end position, and a setting-out position, in which the tilting lever is tilted into the other end position, and wherein, if the at least one sliding door is in its one setting-out position, the two sliding doors are flush with one another and, if the at least one sliding door is in its other setting-out position, are spaced apart from one another in the setting-out direction to such an extent that they can be slid past one another.
According to the invention, either only one of the two sliding doors or both sliding doors can be set out parallel.
Preferably, the first sliding door is guided displaceably by means of at least two lower and two upper sliding door roller fittings designed as above whose bearing bodies are each fastened to the first sliding door and whose running rollers are each guided in the lower and upper running rails, wherein the first sliding door can be set out parallel in a horizontal setting-out direction, which extends at a right angle to the sliding door plane, between a rear setting-out position, in which the tilting lever is tilted into the one end position, and a front setting-out position, in which the tilting lever is tilted into the other end position. The second sliding door is guided displaceably by means of at least two lower and two upper sliding door roller fittings designed as above whose bearing bodies are each fastened to the second sliding door and whose running rollers are each guided in the lower and upper running rails, wherein the second sliding door can be set out parallel in the setting-out direction between a front setting-out position, in which the tilting lever is tilted into the one end position, and a rear setting-out position, in which the tilting lever is tilted into the other end position. If the first sliding door is in its rear setting-out position and the second sliding door is in its front setting-out position, the two sliding doors are flush with one another and, if the first sliding door is in its front setting-out position and the second sliding door is in its rear setting-out position, are spaced apart from one another in the setting-out direction to such an extent that they can be slid past one another.
In the case of sliding door roller fittings having axle pins, the mutually facing axle pins of two lower sliding door roller fittings of a sliding door and the mutually facing axle pins of two upper sliding door roller fittings of a sliding door are each connected to one another by means of a connecting rod and thus rotationally coupled. Even if a setting-out displacement is initiated only on one side of the sliding door, this setting-out displacement is also transmitted to the other side of the sliding door by means of the connecting rod, with the result that the sliding door is always set out parallel.
In different embodiment variants of the sliding door arrangement according to the invention, there is either provision that the sliding doors stand on and roll on the lower running rails by means of the lower sliding door roller fittings or provision that the sliding doors are suspended in and roll on the upper running rails by means of the upper sliding door roller fittings.
Further advantages of the invention are evident from the description, the claims and the drawing. Similarly, the features mentioned above and those still to be further presented can be used in each case individually or together in any desired combinations. The embodiments shown and described should not be understood as an exhaustive enumeration, but rather are of exemplary character for outlining the invention.
In the figures:
The sliding door arrangement shown in
As shown in
The front running rail 7a, 8a and the rear running rail 7b, 8b can be either formed by a single dual track running rail or by two separate running rails.
The sliding door roller fitting 10 for the parallel setting-out of the vertical sliding doors 6a, 6b which are guided displaceably along the horizontal running rails 7a, 7b, 8a, 8b in the setting-out direction 11 has, as shown in
The sliding door roller fitting 10 additionally has a sliding door-side bearing body 18 having a bearing cavity 19 which is open on the end side and in which the tilting lever 12 is held so as to be tiltable between two end positions about a tilting axis parallel to the running roller tangent 17. The bearing cavity 19 has a planar bearing surface 20 which extends horizontally in the setting-out direction 11 in the mounting position of the bearing body 18 and against which the short arm 14 of the tilting lever 12 bears by its curved outer side 16 and rolls thereon during the tilting of the tilting lever 12. The bearing cavity 19 also has two (vertical) driving stops 21 between which the short arm 14 is arranged in order to be driven along bidirectionally in the setting-out direction 11 by the bearing body 18. The two ends of the short arm 14 that point in the setting-out direction 11 are rounded and slide on the two driving stops 21, with the result that the tilting lever 12 is tiltably mounted. The two end positions of the tilting lever 12 are defined by end stops 22 of the bearing body 18 against which the long arm 13 bears in each case in the two end positions. Alternatively or additionally, as in the exemplary embodiment shown, the bearing cavity 19 can also have end stops 23 against which the short arm 14 of the tilting lever 12 bears in each case in the two end positions.
The bearing body 18 can be a one-piece part or, as shown in
As shown in
As further shown in
If the sliding door 6b is manually pressed rearwardly or displaced transversely from its front setting-out position into its rear setting-out position, the sliding door 6a is simultaneously also pressed forwardly or displaced transversely from its rear setting-out position into its front setting-out position by means of the wedge surfaces 31, which slide on one another, of the two sliding doors 6a, 6b. The transverse movement direction is predetermined via wedge surfaces 31 and can be reversed in any desired manner; this also operates with a plurality of sliding doors. If no wedge elements are present, each sliding door 6a, 6b is individually set out manually. Even if the transverse displacement is initiated only on one side of the sliding door, this transverse displacement is also transmitted by means of the connecting rod 32 to the other side of the sliding door, with the result that the sliding door is always set out parallel.
The transverse displacement of the sliding door 6a, 6b has the effect that the short arm 14 of the tilting lever 12 is driven along in the setting-out direction 11 by the one driving stop 21. As a result, the tilting lever 12 is tilted from its one stable end position into its other end position, specifically with the running rail, on which the running roller 15 bears, as tilting axis. If the tilting lever 12 is in a middle position between its two end positions, the axis of rotation of the running roller 15 extends horizontally, that is to say parallel to the setting-out direction 11. During the tilting movement, the curved outer surface 16 rolls on the horizontal bearing surface 20, wherein the respective rolling contact always lies vertically above the running rail and there therefore occurs no lowering or lifting of the sliding door 6a, 6b owing to the radius of curvature R. Consequently, the force required for transversely moving the sliding door 6a, 6b is very low. The two sliding doors 6a, 6b are thus spaced transversely from one another to such an extent that they can be slid past one another (
The setting-out movement of the sliding doors 6a, 6b back into their flush, closed starting position occurs by means of a transverse movement of the sliding doors 6a, 6b in the opposite setting-out direction 11. The transverse displacement of the sliding door 6a, 6b has the effect that the short arm 14 of the tilting lever 12 is driven along in the setting-out direction 11 by the other driving stop 21 and the tilting lever 12 tilts back into the original end position. Here too, there occurs no lowering or lifting of the sliding door 6a, 6b.
The height distance between the sliding door 6a, 6b and bearing body 18 and thus the height of the sliding door 6a, 6b with respect to the running rail can be set by way of the adjusting screw 25, in particular also subsequently.
Instead of, as shown, being L-shaped with a short arm angled on one side, alternatively the short arm 14 could also be T-shaped with two short arms angled on both sides.
Instead of the shown two sliding doors which can be set out parallel, according to the invention, also only one of the two sliding doors 6a, 6b can be formed to be set out parallel. In this case, the one sliding door which can be set out parallel is, in its one setting-out position, flush with the other sliding door which cannot be set out parallel and, in its other setting-out position, is spaced apart from the other sliding door which cannot be set out parallel, in the setting-out direction to such an extent that they can be slid past one another.
Number | Date | Country | Kind |
---|---|---|---|
21205101 | Oct 2021 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
909602 | Hussey | Jan 1909 | A |
2740168 | Wright | Apr 1956 | A |
4457108 | Kuschel | Jul 1984 | A |
6052944 | Louda | Apr 2000 | A |
6442900 | Kvasnes | Sep 2002 | B1 |
11371274 | Li | Jun 2022 | B2 |
Number | Date | Country |
---|---|---|
35 45 971 | Feb 1987 | DE |
0 027 261 | Apr 1981 | EP |
1571282 | Sep 2005 | EP |
Number | Date | Country | |
---|---|---|---|
20230129566 A1 | Apr 2023 | US |