1. Technical Field
The present disclosure relates generally to door systems and components, such as door systems and components for use with movable walls.
2. Background and Relevant Art
Office space can be relatively expensive, not only due to the basic costs of the location and size of the office space, but also due to any construction needed to configure the office space in a particular way. An organization might purchase or rent a large open space in an office complex, and then subdivide or partition the open space into various offices, conference rooms, or cubicles, depending on the organization's needs and size constraints. Rather than having to find new office space and move as an organization's needs change, it is often necessary to have a convenient and efficient means to reconfigure the existing office space. Many organizations address their configuration and reconfiguration issues by dividing large, open office spaces into individual work areas using modular walls and partitions.
In particular, at least one advantage of modular systems is that they are relatively easy to configure. In addition, another advantage is that modular systems can be less expensive to set up, and can be reconfigured more easily than more permanently constructed office dividers. For example, a set of offices and a conference area can be carved out of a larger space in a relatively short period of time with the use of modular systems. If needs change, the organization can readily reconfigure the space.
In general, modular office partitions typically include a series of individual wall modules (and/or panels). The individual wall modules can either be free-standing or rigidly attached to one or more support structures. In addition, the wall modules are typically designed so that they can be assembled together to form a range of different configurations. In particular, a manufacturer or assembler can usually align and join the various wall modules together in almost any particular design, and then secure the design in place with any number of fasteners. These designs can include anything from large conference spaces to individual offices. A “finished” look is generally completed by adding gaskets or trim pieces in the joints between wall modules.
In addition, one will appreciate that many modular wall partitions will need to implement a closure apparatus, such as a door. Doors are manufactured for use in a variety of settings including both exterior as well as interior settings. Manufacturers fabricate doors to suit the end uses found in the various applications in which the doors are to be used. In turn, doors provide a convenient way to enter and exit structures or interior spaces as well as to selectively open and close entrances. The necessary configuration of a particular door is determined by the specific requirements of the site where the door is being installed. These requirements may dictate the direction a door is to be opened, the type of door to be used, the configuration of mounting hardware, and how the door is to be installed, among other aspects.
One particular use for doors is in conjunction with modular wall systems used to reconfigurably divide interior spaces. Of course, there are many types of doors from which to choose. In some cases, a manufacturer or designer will opt for a conventional swinging door, while in other cases, the manufacturer might opt for a sliding door configuration, whether for various aesthetic or space saving purposes. Regardless of the specific style or layout of the door, a manufacturer will typically need to fabricate a given door to suit a specific end-use found in the various applications in which the doors are to be used. One common consideration that will usually need to be taken into account is whether the door is a “left-handed” or “right-handed” door.
Manufacturers of sliding doors often fabricate doors with handles located on a selected side in order to allow the door to be opened in a desired direction. The door's hand is determined by the location of a door handle and the direction a door is opened. In general, the handedness of a door tends to be an important consideration since a door's hand may limit the situations in which the door may be used.
Specific situations where a sliding door is going to be installed dictate the hand required for a particular door. Those wishing to install a sliding door must know, prior to purchasing the door, what hand and other aspects of the door are required and purchase a sliding door that has been manufactured in accordance with the site specific requirements where the door is to be installed. One will appreciate, therefore, that, if the particular handedness of a door is incorrect for a particular layout, the assembler may need to replace the given door with another door that is configured for a different handedness. Specifically, if the hand of a door is wrong, the contractor must then switch the door for one with the correct hand.
One will appreciate, however, that precisely predicting whether a sliding door should be right-handed or left-handed in a given construction site may be in flux, even during installation of the doors and wall modules. This is particularly true of modular partition assemblies, where the partition layouts may change during installation, or even sometime later during a remodeling phase. Furthermore, changes to a project may require corresponding changes in the hand of a door and mistakes may result in the purchase of doors with the wrong handedness. All of the foregoing can delay and burden projects in which the installation of doors is necessary.
Implementations of the present invention overcome one or more problems in the art with systems, methods, and apparatus configured to provide flexibility in the design and installation of door systems. In particular, implementations of the present invention allow for the reconfiguration of a single door regardless of the hand of the door for the given location. Furthermore, implementations of the present invention provide a manufacturer with the ability to produce one type of door that may be adapted for use at a number of given locations, and thereby minimize the number of components and materials used.
For example, a sliding door system that can be readily reconfigured on site for a plurality of different handedness requirements can include a horizontally symmetrical door frame having a plurality of different mounting locations. The plurality of mounting locations is configured to allow the sliding door to be selectively installed according to a plurality of orientations to reverse the handedness configuration of the sliding door. The system can also include a door pull coupled to the door frame. In this case, the door pull is configured for opening and closing the sliding door. In addition, the system can include mounting hardware comprising a roller mount assembly and a roller track assembly. A manufacturer can configure the mounting hardware and roller track assembly to be selectively coupled to the door frame in different orientations to reverse the handedness of the sliding door.
Similarly, a method for reversing the handedness configuration of a sliding door based on the orientation of the sliding door is provided. In particular, an assembler can identify that a sliding door in a doorway has a handedness configuration that needs to be reversed. The assembler can then remove the mounting hardware of the sliding door from a roller track affixed to the upper portion of a doorway. Similarly, the assembler can detach the mounting hardware from the door frame of the sliding door. As a result, by reorienting the door frame in a vertical or horizontal manner, the assembler can reverse the handedness configuration of the sliding door with respect to the doorway. Thereafter, the assembler can reattach the mounting hardware to the door frame and insert the mounting hardware into the roller track, wherein the sliding door is operable in the reverse handedness configuration.
In addition, a sliding door system that can be readily reconfigured on site for a plurality of different handedness requirements based on a vertical or horizontal orientation of the sliding door can include a doorway with a sliding connector means affixed thereto. The sliding connector means can allow a doorway closure means to slide open and closed with respect to the doorway. A reversible mounting means can reversibly mount the doorway closure means to the sliding connector means in a left or right handedness configuration with respect to the doorway even after the doorway closure means has been installed in an initial handedness configuration.
Additional features and advantages of exemplary implementations of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of such exemplary implementations. The features and advantages of such implementations may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such exemplary implementations as set forth hereinafter.
In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The present invention extends to systems, methods, and apparatus configured to provide flexibility in the design and installation of door systems. In particular, implementations of the present invention allow for the reconfiguration of a single door regardless of the hand of the door for the given location. Furthermore, implementations of the present invention provide a manufacturer with the ability to produce one type of door that may be adapted for use at a number of given locations, and thereby minimize the number of components and materials used.
Accordingly, and as will be understood more fully herein, an assembler can purchase a door of the present invention without regard for handedness restrictions. Specifically, when needed, the assembler can then configure the door, as necessary, to satisfy the specific handedness requirements of a given location. Thereafter, the assembler can even reconfigure the door if a different handedness is desired or required. Furthermore, the assembler can reuse the door at different locations with different handedness requirements by easily reconfiguring the door to satisfy the requirements at any given location. As a result, the door system of the present invention can also reduce the number of doors an assembler need keep in inventory.
Implementations of the present invention can be especially beneficial in the construction of modular wall systems, where the wall partition layouts can change during installation, or even sometime later during a remodeling phase. If changes to a project require corresponding changes in the handedness of a door or if a particular handedness configuration for the door is incorrect for a particular layout, the assembler can easily reconfigure the same door to satisfy the different handedness requirements. Thus, implementations of the present invention provide greater flexibility and efficiency in door systems.
Referring now to the Figures,
As used herein, the “hand” of a door generally relates to the direction and manner in which a particular door opens. For example, a user facing a door, and pulling a door pull/handle on the right side of the door, and pulling the door from right to left (swinging or sliding), would be facing a right-handed door configuration. By contrast, a user facing a door and pulling a door pull/handle on the left side of the door, and pulling the door from left to right (swinging or sliding), would be facing a left-handed door configuration. Changing the hand of the door in accordance with implementations of the present invention, therefore, can allow an assembler to easily configure the given door for use at a variety of locations.
To these and other ends,
In situations where a single door pull 120 is used, the side of the door 110 to which the door pull 120 is attached will sometimes be referred to herein for reference purposes only as the “door-pull side” of the door 110. For further reference purposes, the side of the door 110 facing the modular wall to which the door 110 is attached may be referred to herein as the “wall side” of the door 110, while the side facing away from the modular wall may be referred to herein as the “non-wall side” of the door 110.
In addition to the door pull 120,
In particular, the mounting location 140 can include a plurality of mounting holes 142 defined therein. In at least one implementation, the mounting holes 142 of the multiple mounting locations 140 can be substantially similar. As illustrated in
In any event, as illustrated in
As
As further illustrated in
Once the roller track assembly 150 is coupled to the doorway header 160, an assembler can insert the roller mount assembly 132 into the roller track assembly 150, such that the rollers 133 interface with the roller track 156. As a result, the rollers 133 can roll along the length of the roller track 156, thereby allowing the door 110 to slide relative to the doorway. In one implementation, the assembler may then install a trim cap 154, which can provide an aesthetically pleasing and protective cover for the components of the roller track assembly 150 and the roller mount assembly 132. In one implementation, an assembler may also install end caps (not shown) at the opposite ends of the roller track assembly 150.
With continued reference to
Accordingly, an assembler can couple the roller track assembly 150 to a doorway, such that a first portion of the roller track assembly 150 is positioned directly over the doorway, and the remaining portion is positioned to the left or right of the doorway, depending on the direction of travel desired for the door 110. Specifically, an assembler can install the roller track assembly 150 to overlap to the right of the doorway if desiring that the door 110 open to the right, such as with a left-handed door configuration. Similarly, an assembler can install the roller track assembly 150 to overlap to the left of the doorway if desiring that the door 110 open to the left, such as with a right-handed door configuration. As such, the reconfigurable nature of the roller track assembly 150 furthers the reconfigurable capability of the system 100 by allowing the door 110 to be slid opened (or shut) in either direction, as is necessary or desired, for different handedness configurations and different locations.
If desired, the assembler can later reconfigure the door 110 to have a left-handed configuration, such as illustrated in
Although
For example,
An assembler can reconfigure the door 110 from a left handed configuration as illustrated in
As
As illustrated by
As
As illustrated in
As
Of course, one will appreciate that although the hand of the door 110 has been described as being changed after the door 110 has been mounted to a doorway 200, the hand of the door 110 can also be configured from one side to the other as desired prior to mounting the door 110.
In addition to the foregoing, implementations of the present invention can also be described in terms of one or more steps in a method of accomplishing a particular result. For example, at least one implementation of the present invention comprises a method for reversing the handedness configuration of a sliding door based on a vertical or horizontal orientation of the sliding door. This method is described more fully below.
For example, at least one method in accordance with the present invention can comprise an act of determining that a door's handedness configuration needs to be reversed. This act can include identifying a door in a doorway having a handedness configuration that needs to be reversed. For example, an assembler determines that a doorway is configured with a roller track assembly 150 in one position that corresponds with a particular door handedness configuration, but a different door handedness configuration is required for the doorway. Alternatively, a manufacturer can desire to switch the door handedness configuration of a sliding door 110 already in place in a doorway.
The method can also comprise an act of taking apart the existing components of the doorway. This act can include removing the mounting hardware of a sliding door from a roller track affixed to the upper portion of a doorway. For example, an assembler can remove the sliding door 110 from the doorway by removing the mounting hardware 130 of the sliding door 110 from the roller track assembly 150.
In addition, the method can comprise an act of removing the mounting hardware from the sliding door. This act can include detaching the mounting hardware from the door. For example, an assembler can remove the mounting hardware 130 from the mounting locations 140 of the sliding door 110.
Furthermore, the method can comprise an act of reorienting the sliding door to reconfigure its handedness configuration. This act can include reorienting the door in a vertical or horizontal manner to reverse the handedness configuration of the door with respect to the doorway. For example, an assembler can horizontally rotate the sliding door 110 with respect to the doorway. In particular, the assembler can rotate the sliding door 110, thereby locating the door pull 120 on the opposite side of the sliding door 110 with respect to the doorway.
Still further, the method can comprise an act of remounting the sliding door according to the reconfigured handedness configuration. This act can include reattaching the mounting hardware to the door and inserting the mounting hardware into the roller track, wherein the sliding door is operable in the reverse handedness configuration. For example, an assembler can reattach the mounting hardware 130 to the mounting locations 140 of the sliding door 110 and reinsert the mounting hardware 130 into the roller track assembly such that the sliding door 110 can operate according to the reversed handedness configuration.
Accordingly,
The present invention can be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation application of U.S. patent application Ser. No. 12/135,019, filed Jun. 8, 2008, and entitled “CONFIGURABLE SLIDING DOORS WITH REVERSIBLE HAND CONFIGURATIONS,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/942,915, filed Jun. 8, 2007, and entitled “NON-HANDED CONFIGURABLE SLIDING DOORS.” The entire contents of each of the above-referenced patent application are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60942915 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12135019 | Jun 2008 | US |
Child | 13250706 | US |