The invention relates to a sliding element, particularly a sliding door, that is displaceable along a rail and that is provided with a sealing device, with which a room opening is closable. The invention relates further to a sealing element for such a sealing device.
For separating or partitioning rooms or for closing room openings or window openings often sliding elements are used, such as sliding doors made of glass or wood, which are typically guided along a rail by means of two carriages. U.S. Pat. No. 9,290,977B2 discloses a device with carriages that are movable along rails. The device allows moving a sliding element in front of a room opening and finally against the room opening in order to close it tightly. Between the sliding door and the edge of the room opening, e.g. a door frame or a casing, a sealing is provided, which is compressed by a desired degree as soon as the sliding door is guided against the room opening. In order to avoid an optical appearance of the sealing, the sealing is not placed at the front side, but at the rear side of the sliding door.
The sealing device disclosed in U.S. Pat. No. 9,290,977B2, which is shown below in
Hence, for mounting the sealing device a relatively large effort is required, because first the mounting strip 6 needs to be screwed precisely aligned to the sliding element 1′ and only then the sealing element 5 can be inserted. The sealing element 5 exhibits relatively large dimensions. The material expenditure and installation effort is therefore considerable. The combination of the mounting strip 6 and the damping element 5 also requires a large space, wherefore the sliding element 1′ cannot be guided as close to the room opening as desired. The sliding element 1′ driven in front of the room opening looks visually voluminous. In spite of the relatively large dimensions the sealing element 5 exhibits only small compression paths, wherefore correspondingly small and precise displacements of the sliding door or larger dimensions of the damping elements 52 need to be provided.
US2012260579A1 discloses a seal with a conventional T-shaped anchor member and a compression member, which comprises a circular cross-section and two chambers. The T-shaped anchor member requires a T-shaped anchor groove in a door panel into which the anchor member can be inserted only after considerable deformation. The anchor member sits therefore possibly with considerable play in the anchor groove and is exposed to significant wear. The compression body with the circular cross-section has only a relatively small compression path and can therefore seal only relatively small air gaps.
DE4228986A1 discloses a seal for a door or window with an arrow-shaped anchor member which is engaged in a T-shaped anchor groove that is opened towards the front side of the door. This seal cannot advantageously be anchored particularly at the edge of the sliding door.
EP1431501A2 discloses a sliding door system with a sliding door held in a guiding device and a sealing device with sealing profiles that directly contact the floor or directly contact one another, resulting in a disturbing friction which is reduced by appropriate choice of material.
The present invention is therefore based on the object of providing an improved sliding element with a sealing device as well as an improved sealing element.
The sealing device shall have a simple construction and shall be mountable with little effort. The sealing device shall require as little material as possible and shall be producible at low-cost. Further, the sealing device shall allow the sliding element, i.e. the sliding door, to be driven close to the room opening, i.e. the door frame or casing provided there. It shall be possible to manufacture the sliding element with the sealing device with slim dimensions, so that an aesthetically advantageous impression results. The sealing element shall effortlessly be mountable and shall in spite of the relatively small dimensions have a relatively large compression path and shall tightly seal the gap between the sliding element and the door frame or casing.
This problem is solved with a sliding element with a sealing device according to claim 1 as well as a sealing element according to claim 11. Preferred embodiments of the invention are defined in further claims.
The sliding element comprises a sliding plate and a sealing device that comprises at least one sealing element, which forms a sealing frame that is arranged on a rear side of the sliding plate and that extends peripherally along an edge of the sliding plate.
According to the invention the sliding plate comprises a base plate and a flange plate, which is offset from the base plate, which is connected in one piece to the base plate and which is separated at its edge from the base plate by a circumferential anchor groove, which anchor groove serves for holding the at least one sealing element, which at least one sealing element comprises an anchor member that is inserted into the anchor groove and that is connected via a connection body to a compression member. Further, the anchor member of the at least one sealing element held within the anchor groove is aligned at least approximately in parallel to the sliding plate, i.e. to the front side or rear side of the sliding plate.
With the inventive solution, the requirement of a mounting strip, which is provided with an anchor groove, can be avoided. The anchor groove is advantageously incorporated into the sliding plate, whereby, on the one hand, the base plate, which is visible from the front side of the room opening and, on the other hand, the flange plate, which is visible from the rear side of the room opening, enclose the anchor groove. The base plate and the flange plate have outer surfaces facing in opposite directions, which preferably are identical in design and are indistinguishable by the user. Laterally and on the upper side, the dimensions of the base plate are preferably slightly larger than the dimensions of the flange plate, so that a receiving space for the connection body of the related sealing element is provided, which is displaced to the back relative to the flange plate and is supported by the base plate. Hence, the related sealing element is not only anchored in the sliding plate, but is also integrated therein, wherefore only device parts which are relevant for the sealing function, protrude from the sliding plate. At the lower side however, the flange plate can project beyond and cover the base plate and serve for covering sealing elements provided there.
Hence, the at least one sealing element can quickly and conveniently be mounted in the anchor groove and fulfils the sealing function optimally, while it does not appear optically. Due to the avoidance of a mounting strip the sliding plate with the sealing device integrated therein can be made slim and aesthetically advantageous. The room opening can tightly be closed by means of the inventive sliding element, i.e. the inventive sliding door. Due to the omission of the mounting strip and the integration of the sealing elements into the sliding plate, the slim sliding plate can be driven close against the room opening and requires little space only in front of the tightly sealed room opening.
Since the sliding plate with the anchor groove can be manufactured with machines and the sealing element can quickly be inserted into the anchor groove, e.g. also at the place of installation, the inventive sliding element can be manufactured inexpensively with minimal effort and material costs.
The sealing elements, i.e. sealing profiles, can be made from conventional materials such as rubber or silicone. Thereby, on the one hand for the anchor member and on the other hand for the compression member different materials can be used whose properties are adapted to the function of the anchor member or the compression member respectively. The anchor member can be manufactured for example from a less elastic material than the compression member.
In a preferred embodiment, a first sealing element with its anchor member is anchored in a upper member of the anchor groove at the upper side of the sliding plate and in a left and a right member of the anchor groove on the left and the right side of the sliding plate and a second sealing element with its anchor member is anchored in a lower member of the anchor groove at the lower side of the sliding plate. With two different sealing elements the assigned tasks can optimally be fulfilled with minimum material requirement. By the first sealing element a lateral coupling to a plane, which is defined by the edge of the room opening or the casing mounted there. I.e., the sliding plate can be moved in front of the room opening and then can be driven against the room opening, whereby the room opening, laterally and at the upper side, is tightly closed by means of the first sealing element. The second sealing element serves for closing a gap which remains after the sliding plate has been lowered to the floor.
A stable connection between the sliding plate and the first sealing element and, at the same time, a space saving partial integration of the first sealing element into the sliding plate is achieved because the anchor member of the first sealing element is held within the anchor groove aligned at least approximately in parallel to the sliding plate. Optimum sealing however results by the alignment of the compression member of the first sealing element with a first compression axis perpendicular to the sliding plate.
A particularly reliable sealing is achieved, by forming the compression member of the first sealing element at least approximately symmetrical and with a form of a cardioid having two contact zones and a symmetry axis, which corresponds to the first compression axis. With the embodiment at least approximately in the form a cardioid, two contact zones result after closing the sliding door, which practically effect a doubled sealing.
As mentioned, in preferred embodiments the first sealing element can exclusively be used for creating the sealing frame. I.e., the first sealing element can also be provided at the lower side the sliding plate.
In a further preferred embodiment, a second sealing element is provided, whose anchor member, within the anchor groove, is at least approximately aligned in parallel to the sliding plate, and whose compression member has a second compression axis, which extends in parallel to the sliding plate. Hence, the circumferential anchor groove is also aligned in parallel to the base plate and to the flange plate.
The second sealing element can be designed particularly slender, by providing that the second compression axis, which after mounting the second sealing element is vertically aligned, traverses the anchor member and the compression member of the second sealing element.
Preferably the compression member of the second sealing element comprises at least on one side or on both sides each at least one bending fold, which are aligned inclined, preferably perpendicular to the second compression axis. If a plurality of bending folds is provided, then they are arranged alternately on both sides of the compression member and mutually displaced along the second compression axis.
The bending folds are designed and arranged in such a way that, when the second sealing element is displaced along the second compression axis, the compression member of the second sealing element is compressed, whereby the compression chambers move essentially along the second compression axis and are not laterally swivelled out. By the inventive embodiment of the second sealing element is therefore provided that its compression member is compressed along the second compression axis. Hence, after closing the sliding door a broad sealing body results at its lower side, which tightly closes the related door gap. Lateral tilting of the compression member, which would inhibit a desired compression, is avoided. By the compression of the compression member along the second compression axis a relatively broad door gap can reliably be sealed without requiring larger dimensions of the sealing element. Hence, in spite of the slender design of the second sealing element, the sealing function is still optimally fulfilled.
In preferred embodiments, the compression member of the second sealing element comprises at least two compression chambers, which are arranged upon one another along the second compression axis and which move essentially along the second compression axis when the second sealing element is lowered to the floor. By the compression chambers, which comprise hollow spaces, a perfect acoustic and thermal sealing is reached.
The bending fold, i.e. at least one of the bending folds, is preferably arranged along the second compression axis between the compression chambers. Bending folds can also be incorporated in the walls of the compression chambers to facilitate the compressions process, optionally in combination with a folding process. The at least one bending fold can be provided in the form a curvature, groove or material recess.
The sealing frame can also be formed completely by the second sealing element. I.e., the second sealing element can also be inserted into the anchor groove laterally and on top of the sliding plate.
Hence, for forming the sealing frame the first sealing element or the second sealing element or combinations of the first and second sealing element may advantageously be used. In all possible alternative embodiments the compression axis of the compression member is preferably always aligned perpendicular to the body, i.e. to the body surface that needs to be sealed.
The compression axis of the compression members of the first sealing element and of the second sealing element can be aligned in parallel or inclined, preferably perpendicular to the axis of the anchor member of the related sealing element. Hence, the first and second sealing elements can universally be used individually or in combination and in different embodiments for forming a sealing frame.
The invention is described below in detail with reference to the drawings, wherein:
In preferred embodiments the sliding system 100 is designed in such a way that the sliding door 1 can be moved horizontally in front of the room opening and in the final phase of the closing process can be moved against the casing 8 and against the floor, in order to tightly close the room opening on all sides.
For this purpose, the sliding door 1 comprises a sliding plate for example made from wood, that in this preferred embodiment is provided with a sealing device, which comprises a first sealing element 2 arranged along the upper edge and along the lateral edges of the sliding plate 10, and a second sealing element 3 arranged along the lower side of the sliding plate 10. Hence, both sealing elements 2, 3 form a sealing frame at the rear side of the sliding door, which is partly or preferably fully closed in itself. When closing the sliding door 1, the first sealing element 2 is guided against the casing 8 and the second sealing element 3 is guided against the floor and compressed, thereby providing optimal acoustic and thermal sealing.
The sliding plate 10 comprises on the front side a base plate 11 and on the rear side a flange plate 12 that is facing the door frame or casing 8. Between the base plate 11 and the flange plate 12 an anchor groove 18 is provided, which surrounds the flange plate 12 like a frame and in which the sealing frame with the first and second sealing element 2, 3 has been inserted.
At the left side and outside of the sealing element 2 the sliding plate 10 is optionally provided with an edge member 15, which is connected to a first carriage 91. At the front side the sliding plate 10 is connected to a second carriage 91′. As described in U.S. Pat. No. 9,290,977B2 the two carriages 91, 91′ are preferably guided on separate rails 9, 9′. Along the second rail 9′, the front-sided second carriage 91′ can completely be driven away from the room opening. In order to avoid that the first carriage 91 enters the range of the second rail 9′, it is displaced relative to the range of the sliding door 1, which together with the sealing device is used for sealing the room opening. In the shown embodiment, this is reached particularly advantageous by the asymmetrical design of the sliding door 1 which in addition is provided with the edge member 15. Hence, the carriages 91, 91′ can advantageously be decoupled from the neighbouring rails 9′, 9 and the room opening can completely be opened.
The edge member 15 is therefore only optionally provided and, as shown in
The sealing element 2 shown forms a member of the sealing frame shown in
The first sealing element 2 shown in
For the purpose of advantageously mounting the sealing frame with the sealing elements 2, 3, a circumferential anchor groove 18 is introduced at the rear side of the sliding plate 10. The anchor groove 18 forms an anchor frame, which corresponds to the sealing frame with the sealing elements 2, 3. The sliding plate 10 comprises a base plate 11 at the front side and a flange plate 12 at the rear side facing the room opening, which is connected in one piece with the base plate and which is merely peripherally separated from the base plate 11 by the anchor groove 18 and the receiving space 14.
By introducing the receiving space 14 and the anchor groove 18 the flange plate 12 is excavated at the edges. For example, in a first process the receiving space 14 and in a second process step the anchor groove 18 is excavated, which is directed between the base plate 11 and the flange plate 12 in parallel thereto against the neighbouring side of the sliding door 1. Hence, the profile of the excavated recess with the receiving space 14 and the anchor groove 18 is preferably an L-profile that is directed towards the centre of the flange plate 12. Since the sliding plate 10 with the base plate 11 and the flange plate 12 is preferably made as one unitary piece, the front side and the rear side of the sliding door 1 have an identical appearance, if the user does not prefer another design. After the sliding door 1 has been closed, the sealing frame 2, 3 adjoins the casing 8 and the floor and is therefore invisible. At the front side and the rear side for example only a white surface or the wooden structure of the sliding plate 10 is visible.
The sliding plate 10 can be made from metal or plastic. If the sliding plate 10 is made from plastic, a casting box, whose interior space corresponds to the dimensions the sliding plate, may for example be provided and filling material with an L-profile is positioned at locations, where the receiving space 14 and the anchor groove 18 are provided. Subsequently plastic is poured into the casting box.
Since in the receiving space 14 receives at least a part of the sealing frame 2, 3, the dimensions of the flange plate 12 will typically by a degree, which corresponds to the dimensions of the sealing frame 2, 3, be smaller than the dimensions of the base plate 11.
As shown in
The compression member 22 of the first sealing element 2 is designed at least approximately symmetrical and has at least approximately the form of a cardioid that exhibits two contact zones 221, 222 and a symmetry axis, which corresponds to the compression axis x and which is aligned perpendicular to the room opening. When closing the sliding door 1 the two contact zones 221, 222 hit the casing 8, whereafter the compression member 22 is pressed against the base plate 11 and is deformed while maintaining symmetry. The two contact zones 221, 222 thereby effect a doubled sealing, wherefore reliable acoustic and thermal sealing results.
In this preferred embodiment the compression axis y traverses the anchor member 31 and the compression member 32 of the second sealing element 3 approximately in the middle. In this way only little space is required for mounting the second sealing element 3. The connection body 30 of the second sealing element 2 is seated with a shoulder member 301 on a shortened member 111 of the base plate 11 thereby ensuring that the mounted second sealing element 3 is aligned along a straight line. The flange plate 12 extends beyond the shortened member 111 of the base plate 11 and serves thereby as a bezel for covering the connection body 30.
It has been outlined that the sealing frame comprises the first sealing element 2, the second sealing element 3 or a combination therefrom. If the sealing frame consists only of the first sealing element 2, then it forms all four parts of the sealing frame as shown above in
The bending folds 323, 324 and the compression chambers 321, 322 are formed in such a way, that when the second sealing element 3 is displaced along the second compression axis y, i.e. when vertically lowering the sliding plate 10, the compression member 32 of the second sealing element 3 is compressed and optionally partly folded. Thereby, the compression chambers 321, 322 are displaced downwards essentially along the second compression axis y. A lateral displacement of the compression element 22, by which the compression of the compression member 22 would fail, is avoided. Instead the compression chambers 321, 322 are compressed along the compression axis y, whereby a tight closure results below the sliding plate 10.
Number | Date | Country | Kind |
---|---|---|---|
17162591 | Mar 2017 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3140517 | Richter | Jul 1964 | A |
3388502 | Ceyer | Jun 1968 | A |
3452481 | Bailey | Jul 1969 | A |
3518793 | Hirtle | Jul 1970 | A |
3562957 | Landis | Feb 1971 | A |
3616137 | Horton | Oct 1971 | A |
3758992 | Olson | Sep 1973 | A |
4095640 | Beckerer, Jr. | Jun 1978 | A |
4343110 | Thompson | Aug 1982 | A |
4478003 | Flett | Oct 1984 | A |
4538380 | Colliander | Sep 1985 | A |
4656783 | Ahonen | Apr 1987 | A |
8474189 | Peterson | Jul 2013 | B1 |
9290977 | Haab et al. | Mar 2016 | B2 |
20120260579 | DeMello | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
42 28 986 | Mar 1994 | DE |
1 431 501 | Jun 2004 | EP |
2 685 039 | Jan 2014 | EP |
Entry |
---|
Sep. 22, 2017 Extended Search Report issued in European Patent Application No. 17162591.6. |
Number | Date | Country | |
---|---|---|---|
20180274285 A1 | Sep 2018 | US |