This disclosure relates to toys, and more particularly to a fidget toy that has moving parts to provide entertainment.
Fidget toys, such as the fidget spinner with a central stationary portion around which a spinning component can be freely rotated by use of bearings, can provide entertainment. The popularity of such devices increased significantly in 2017.
In accordance with the disclosure, a fidget toy is provided in a case having openings through which a moving member can be observed, the member being set into movement by a user moving and shaking the case or physically sliding the moving member through said openings. The moving member is comprised of a circular or spherical configuration magnet, with the case holding a stationary magnet that provides a rolling track against which the moving magnet travels in a cyclical fashion, around and around inside the case.
The subject matter of the present technology is particularly pointed out and distinctly claimed in the concluding portion of this specification. However, both the organization and method of operation, together with further advantages and embodiments thereof, may best be understood by reference to the following description taken in connection with accompanying drawings wherein like reference characters refer to like elements.
The system according to a preferred embodiment of the present disclosure comprises fidget toy having a case that reveals a traveling member in the form of a circular or spherical magnet that moves around and around on a track defined by a stationary magnet held in the case.
Referring to
Referring now to
Case member 20 has raised perimeter channel wall portions 34 along the left and right outer edges of openings 14 on the longer edges of the case and raised perimeter channel wall portions 36 along the front and back outer edges of openings 14 on the shorter edges of the case. The distance between the openings and the perimeter channel wall portions is defined to create a space to accommodate the disk magnet 32 between the peripheral edges of magnet 30 when secured to the case and the perimeter channel wall portions, such that the magnet 32 is free to roll along the peripheral faces of magnet 30, but remain contained within the case between magnet 30 and channel walls 34, 36.
To assemble the device, with the two case portions 18, 20 separate, case portion 20 is laid flat on a work surface and adhesive member 28 is positioned on the inner face of portion 24 of case member 20. Magnet 30 is placed against the adhesive 28 and then the second adhesive portion 26 is pressed against the face of the magnet 30 opposite the face adhered by adhesive 28. Magnet 32 is positioned on the inner face of case portion 20, between the magnet 30 and the raised perimeter channel wall portions 34, 36. Then ensure proper magnet 30 positioning by sliding magnet 32 completely around the peripheral edge of magnet 30 without friction or pinching between magnet 30 and the channel wall portions. The upper case portion 18 is then lowered into position over lower case portion 20, and the two case portions are snapped together, as the case portions are provided with snap fittings so as to securely join together. Once so joined, the case portions are not intended to be separated again, providing the device as a single assembled piece with moving magnet 32 contained therewithin.
With the device so assembled, magnet 32 is free to roll along the peripheral edges of magnet 30, along channels defined between magnet 30 and channel walls 34, 36. Magnet 32 is visible through the openings 14 as the magnet moves, but contained within the case so as to not fall out. The magnet 32 will travel around and around the outer edge of magnet 30 by a user moving the case to effect the movements, or physically moving said magnet through openings.
The relationship between the magnets is better understood with reference to
In accordance with the disclosure, the devices uses magnetic polarity such that a round magnet gets stacked on an adjacent edge of another larger magnet (either rectangular, ovular, round, any shape, with attendant shape changes to the case also possible) with the polarity facing the opposite direction. These polarity differences allow the round magnet to move around the larger magnet, enabling a quick sliding/rolling motion to be imparted to the round magnet, with the enclosure encasing both magnets within, so neither magnet can be removed. The larger magnet (which is not visible through the case when assembled, unless a transparent case material is employed) is permanently adhered to the enclosure, thus cannot be removed. The rolling magnet, is visible through the enclosure cutouts to allow the user to see and interact with the rolling magnet in action. The rolling magnet is covered by at least 10% overhang on each edge of the enclosure ensuring that the magnet cannot unintentionally pop out of the enclosure with the amount of force that would happen during normal use. The top and bottom enclosure are permanently snapped together where the snaps are contained on the inside of the device, and thus would not be able to be accessed to unsnap the enclosure without breaking the device. While the preferred embodiment has the 2nd magnet in circular disk form, other shapes can be employed, such as a spherical shaped 2nd magnet as discussed below, for example. In an alternative embodiment, magnet 32 can, instead of being a magnet, be made of a ferrous metal, wherein only the attraction of magnet 30 is relied on to keep the rolling portion 32 in contact with magnet 30.
Referring to
Referring now to
Case member 120 has curved perimeter channel wall portions 134 along the edges of openings 114, 114′. The distance between the openings and the perimeter channel wall portions is defined to create a space to accommodate the spherical magnet 132 between the peripheral edges of magnet 130 when secured to the case and the perimeter channel wall portions, such that the magnet 132 is free to roll along the peripheral faces of magnet 130, but remain contained within the case between magnet 130 and channel walls 134.
To assemble the device, with the two case portions 118, 120 separate, case portion 120 is laid flat on a work surface and adhesive member 128 is positioned on the inner face of portion 124 of case member 120. Magnet 130 is placed against the adhesive 128 and then the second adhesive portion 126 is pressed against the face of the magnet 130 opposite the face adhered by adhesive 128. Magnet 132 is positioned on the inner face of case portion 120, between the magnet 130 and the perimeter channel wall portions 134. Then ensure proper magnet 130 positioning by sliding magnet 132 completely around the peripheral edge of magnet 130 without friction or pinching between magnet 130 and the channel wall portions. The upper case portion 118 is then lowered into position over lower case portion 120, and the two case portions are snapped together, as the case portions are provided with snap fittings so as to securely join together. Once so joined, the case portions are not intended to be separated again, providing the device as a single assembled piece with moving magnet 132 contained therewithin.
With the device so assembled, magnet 132 is free to roll along the peripheral edges of magnet 130, along channels 135 defined between magnet 130 and channel walls 134. Magnet 132 is visible through the openings 114 as the magnet moves, but contained within the case so as to not fall out. The magnet 132 will travel around and around the outer edge of magnet 130 by a user moving the case to effect the movements, or physically moving said magnet through the openings 114.
Magnet 132 can, instead of being a magnet, be made of a ferrous metal, wherein only the attraction of magnet 130 is relied on to keep the rolling portion 132 in contact with magnet 130. In corresponding fashion to the embodiment of
In accordance with the disclosure, the device uses magnetic polarity such that a round or spherical magnet gets stacked on an adjacent edge of another larger magnet (either rectangular, ovular, round, any shape) with the polarity facing the opposite direction. These polarity differences allow the round magnet to move around the larger magnet, enabling a quick sliding/rolling motion to be imparted to the round magnet, with the enclosure encasing both magnets within, so neither magnet can be removed. The larger magnet (which is not visible through the case unless transparent case materials are used) is permanently adhered to the enclosure, thus cannot be removed. The rolling magnet is visible through the enclosure cutouts to allow the user to see and interact with the rolling magnet in action. The rolling magnet is covered by at least 10% overhang on each edge of the enclosure ensuring that the magnet cannot unintentionally pop out of the enclosure with the amount of force that would happen during normal use. The top and bottom enclosure are permanently snapped together where the snaps are contained on the inside of the device, and thus would not be able to be accessed to unsnap the enclosure without breaking the device. While the preferred embodiment has the 2nd magnet in circular disk form, other shapes can be employed, such as a spherical shaped 2nd magnet (or ferrous metal sphere), for example. In an alternative embodiment, magnet 132 can, instead of being a magnet, be made of a ferrous metal, wherein only the attraction of magnet 130 is relied on to keep the rolling portion 132 in contact with magnet 130.
Suitable dimensions of an exemplary device of
An aspect of the device is viewing the rolling magnet/member to allow for more types of interaction while being low profile enough to fit into the palm of a user's hand. There is a tolerance given in the channel for where the rolling magnet is positioned for spacing between the magnet and walls, allowing no friction between the rolling magnet and the enclosure overhang walls.
The case can be made of an array of different additive and subtractive manufacturing processes including, but not limited to; injection molded plastic, 3D printed plastic, subtractive cutting of wood, metal or plastic, for example.
Since the device in a preferred embodiment is relatively small and has a strong magnet inside, the entire device can be magnetically mounted to metal or another magnet and self suspend itself for storage when not in use.
While a preferred embodiment of the technology has been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the true spirit and scope of the technology.
Number | Name | Date | Kind |
---|---|---|---|
1005853 | Lewis | Oct 1911 | A |
2818680 | Borsos | Jan 1958 | A |
2994984 | Luchsinger | Aug 1961 | A |
3995855 | Schultz | Dec 1976 | A |
4031660 | Chen | Jun 1977 | A |
4194737 | Farmer | Mar 1980 | A |
4200283 | Andrews | Apr 1980 | A |
4233777 | Inoue | Nov 1980 | A |
4486729 | Lee | Dec 1984 | A |
4531923 | Lohr | Jul 1985 | A |
4575346 | Ogawa | Mar 1986 | A |
4753623 | Krut | Jun 1988 | A |
4756530 | Karman | Jul 1988 | A |
4822044 | Perkitny | Apr 1989 | A |
4871340 | Ross | Oct 1989 | A |
4917644 | Sunshine | Apr 1990 | A |
5135425 | Andrews | Aug 1992 | A |
5152711 | Gross | Oct 1992 | A |
5184970 | Binkley | Feb 1993 | A |
5506459 | Ritts | Apr 1996 | A |
5540187 | Udelle | Jul 1996 | A |
5591062 | Hettinger | Jan 1997 | A |
6150913 | Simmons | Nov 2000 | A |
7275974 | Perry | Oct 2007 | B2 |
7575498 | Perry | Aug 2009 | B2 |
10039993 | Antolin | Aug 2018 | B2 |
10293633 | Hoffman | May 2019 | B2 |
10307687 | Umberger | Jun 2019 | B2 |
10449466 | Kinmont, Jr. | Oct 2019 | B2 |
10625172 | Mak | Apr 2020 | B2 |
10913008 | Hamel | Feb 2021 | B2 |
10966898 | Nichols | Apr 2021 | B2 |
11123649 | Kownacki | Sep 2021 | B1 |
11484811 | Cantoli-Alves | Nov 2022 | B2 |
20070298677 | Hoffman | Dec 2007 | A1 |
20080057821 | Perry | Mar 2008 | A1 |
20180342930 | Roberts | Nov 2018 | A1 |
20180345156 | Bornstein | Dec 2018 | A1 |
20190038991 | Schiraga | Feb 2019 | A1 |
20190105578 | Brous | Apr 2019 | A1 |
20190358559 | Bennett | Nov 2019 | A1 |