1. Field of the Invention
The present invention relates generally to a sliding mechanism, and more particularly to a sliding mechanism with a fixing function by the use of which, a server can be installed conveniently to a PC or a server system and dismantle therefrom, thereby facilitating the repairer or user.
2. The Prior Arts
Generally, a server is mounted slidably to a server system or a computer casing via a sliding mechanism, which is generally inserted into a pair of slide channels in the casing. In case of repairing, the server can be pulled outward from the casing and after the repairing the server is pushed slidably back into the casing. A conventional sliding mechanism used in a server system or a PC generally includes an outer track, an inner track and sometimes an intermediate track between the outer and inner tracks in order to increase a total traveling path of the sliding mechanism. In some cases, the outer tracks are fixed securely to two opposite sides of the casing while the inner tracks are used for carrying the server thereon.
To install a server within a casing, the server is firstly mounted on a pair of inner tracks, which, in turn, are slidably mounted into a pair of outer tracks. Afterward, the outer tracks are inserted slidably into two slide channels formed in the casing. Note that after the outer tracks are inserted fully into the slide channels of the casing, a resilient stick and an engaging hook are used for securely retaining the outer tracks within the casing, thereby preventing untimely removal of the server from the casing.
Note that in order to doubly secure the outer tracks in the slide channels of the casing, in addition to the resilient stick and the engaging hook, presently a position fixing structure is used for securely retaining the outer tracks within the casing. The fixing structure includes a first fixing element mounted at the free ends of the outer tracks and a second fixing element mounted at the free end of the slide channels in the casing, such that when the outer tracks are inserted slidably into the casing and upon reaching the free end of the slide channels, the first and second fixing elements engage each other, thereby preventing untimely removal of the server from the casing.
It is noted that the first fixing element includes a protrusion extending outwardly from the free end of the outer track along a longitudinal direction of the track while the second fixing element includes an engaging hole formed at the free end of the slide channel complementing with the protrusion. Since the protrusion is generally circular or rectangular in cross-section, the engaging hole is also circular or rectangular. In some prior arts, a cylindrical positioning pin is mounted in the engaging hole such that once the outer tracks are slidably inserted into and upon reaching the free end of the slide channels, the circular protrusion extends into the circular hole, or the rectangular protrusion extends into the rectangular hole, or the positioning pin extends into an axial hole formed at the free end of the protrusion, thereby preventing untimely disengagement of the outer tracks from the slide channels.
In case of repairing or replacing a server, the resilient stick is manipulated in such a manner to release engagement between the engaging hook and the casing, thereby permitting outward withdrawal of the outer tracks from the slide channels in the casing, hence the server is exposed to an exterior of the casing for undergoing repairing or replacement. It is noted that in case of a great impact applied on the conventional sliding mechanism at this time, the resilient stick deforms permanently since the stick cannot withstand the great impact. In addition, for a slim server (generally known a blade server), which is relatively compact in size and hence it is also relatively difficult to form the axial hole at the free end of the protrusion mounted on the outer track and the engaging hole at the free end of the slide channel owing to the limited size and their configuration of circular or rectangular and vice versa.
Taiwanese patent publication No. 201446116 and US patent publication No. 2010/0072153 respectively discloses a sliding mechanism consisting of a support frame formed with a rectangular hole and an outer track mounted slidably on the support frame and formed with a rectangular protrusion such that the latter engages in the former once the outer tracks are slidably inserted into the casing, thereby exposing the server from the casing.
Taiwanese patent publication No. 201408241 discloses a slide mechanism including a cylindrical protrusion mounted at the free end of the slide track while a circular engaging hole is formed at the support frame such that upon reaching the free end of the support frame owing to movement of the slide tracks relative to the support frame, the cylindrical protrusion engages the engaging hole, thereby retaining the slide tracks exterior of the support frame.
One drawback of the prior art sliding mechanisms resides in that the different shapes between the cylindrical protrusion and configuration of the engaging hole cannot be matched up and therefore is unsuitable for blade server owing to limited size and space.
A primary objective of the present invention is to provide a sliding mechanism with fixing function for a blade server, which consists of circular or rectangular hole and a frame with positioning pin, which is simple in structure, and which is not easily damaged or ruined in case of great impact applied thereto.
One specific feature of the present invention is to provide a resilient plate on the front end of a slide frame and a protrusion extending outwardly from the front end of the slide frame along a longitudinal direction. The resilient plate has a hooking unit exposed from the front end of the slide frame. The protrusion preferably includes a plurality of concentrically disposed cylindrical portions with different diameters. One cylindrical portion has a free end and a positioning hole extending inwardly and axially from the free end. A casing carrying the slide frame is formed an engaging hole or a positioning pin with configuration complementing the cylindrical portion such that once the slide frame slides into the casing, the cylindrical portion extends and engages the engaging hole or the positioning pin extends into the positioning hole in the cylindrical portion, thereby preventing untimely disengagement of an assembly of the slide frame, the resilient plate and the cylindrical portion from the casing also owing to the hooking unit of the resilient plate engaging a lateral side of the slide frame.
A server system or PC with fixing function of the present invention includes a slide mechanism and a casing. The slide mechanism accordingly includes a slide frame having a front end; a resilient plate fixed on the slide frame, having a front section that is exposed from the front end of the slide frame and that is formed a hook unit; and a first fixing element mounted on the front end of the slide frame, having a protrusion extending outwardly from the front end of the slide frame along a longitudinal direction thereof, wherein the protrusion is constituted by a plurality of concentrically disposed cylindrical portions with different diameters. The casing includes a second fixing element having at least one engaging hole with a cross-section so as to adapt to engage the outer periphery of one of the cylindrical portions of the protrusion while the hook unit of the resilient plate engages a lateral side of the slide frame, thereby preventing untimely disengagement of an assembly of the slide frame, the resilient plate and the first fixing element from the casing.
In this embodiment, the protrusion includes a first cylindrical portion and a second cylindrical portion having a diameter smaller than that of the first cylindrical portion. The second cylindrical portion has a free end and a positioning hole extending inwardly and axially from the free end.
Preferably, the engaging hole in the casing is a rectangular hole defining an inner diameter complementing with an outer diameter of the first cylindrical portion such that the latter engages in the former.
Preferably, the engaging hole in the casing is a circular hole defining an inner diameter complementing with an outer diameter of the second cylindrical portion such that the latter engages in the former.
In one embodiment, the second fixing element further includes a positioning pin having an outer diameter complementing with an inner diameter of the positioning hole in the second cylindrical portion such that after the second cylindrical portion engages or align with the annular hole, the positioning pin extends into the positioning hole in the second cylindrical portion so as to enhance engagement between the second cylindrical portion and the casing.
In one embodiment, the first fixing element has two of the protrusions mounted on the front end of the slide frame in a symmetrical manner while the second fixing element has two of the engaging holes formed in the casing for extension of the protrusions respectively therethrough.
Preferably, the casing further includes at least one threaded hole confining the annular hole and a positioning pin such that after the second cylindrical portion engages in the annular hole, the positioning pin is inserted into the axial hole in the second cylindrical portion so as to enhance engagement between the second cylindrical portion and the casing.
In one embodiment, the first fixing element further has a fixing seat formed with two passage holes to permit mounting of the protrusions respectively therein such that the first cylindrical portion and the second cylindrical portion extend respectively through the two passage holes so as to be exposed from a front side of the fixing seat.
Preferably, the first fixing element further includes a fixing plate mounted on a rear side of the fixing seat so as to cover the rear side and a pair of compression springs disposed between the fixing plate and the protrusions so as to bias and expose the first cylindrical portion and the second cylindrical portion from the front side of the fixing seat.
Preferably, the first fixing element further includes two guide rods upon which the compression spring are sleeved thereon so as to align the compression springs to extend in an axial direction of the protrusions.
In the sliding mechanism of the present invention, since the slide frame is secured to an inner wall surface of the casing, by the implementation of the protrusion of the first fixing element and the engaging hole of the second fixing element in the casing, the positioning pin extends into the positioning hole in the cylindrical portion, thereby preventing untimely disengagement of an assembly of the slide frame, the resilient plate and the cylindrical portion from the casing also owing to the hooking unit of the resilient plate engaging a lateral side of the slide frame.
The present invention will be apparent to those skilled in the art by reading the following detailed description of a preferred embodiment thereof, with reference to the attached drawings, in which:
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Referring to
As shown in
Referring again to
Referring to
To be more specific, each of the guide rods 34 has a constricted rear end extending into a position hole 351 in the fixing plate 35 so as to retain the guide rods 34 stably within the passage holes 310 in the fixing seat 31, which, in turn, align the compression springs 33 to extend in an axial direction of the protrusions 32.
The casing 4 is formed with the second fixing element 41 having two engaging holes 411 align respectively with the protrusions 32 so as to permit extension of one of the cylindrical portions 321, 322 therein while the hook unit 21 of the resilient plate 2 engages the end plate 11 of the slide frame 1, thereby preventing untimely disengagement of an assembly of the slide frame 1, the resilient plate 2 and the first fixing element 3 from the casing 4. Preferably, each of the engaging holes 411 is a rectangular hole as best shown in
For installing a server into the casing 4, the sliding mechanism of the present invention constituted by the above elements are assembled first of all, and after which the assembly of the slide frames 1, the resilient plates 2 and the first fixing elements 3 are installed into the slide channels formed on two inner side surfaces of the casing 4 in a conventional manner such that the front ends 10A of the slide frames 1 are flush with the outer end of the casing 4, wherein, the first cylindrical portion 321 extend into the rectangular hole 411 (see
In case of repairing or replacing the server, the user only needs to swing the resilient plate 2 in the transverse direction relative to the longitudinal direction of the slide frame 1 in order to disengage the hooking unit 21 from the end plate 11 of the slide frame 1, after which the protrusion 32 is pushed against biasing action of the spring 33 to disengage the respective cylindrical portion 321(322) from the engaging hole in the casing 4. The assembly of the slide frame 1, the resilient plate 2 and the first fixing element 3 can be easily removed from the casing 4. Of course, sometimes the positioning pin 37 is removed first of all from the positioning hole 323 in the second cylindrical portion 322.
Although the present invention has been described with reference to the preferred embodiments thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.