The present invention is related to technology of a sliding member and a method of manufacturing the sliding member, more specifically, a technology for manufacturing a sliding member which is excellent in both strength and workability.
Conventionally, in various machines such as construction equipment and automobiles, a sliding member such as a sliding bearing is used in order to rotate a shaft inserted into a housing and techniques relating thereto are also disclosed (for example, see Patent Literatures 1 and 2).
Problems to be Solved by the Invention
According to the technique described in Patent Literature 1, a sheet material having a two layer structure is molded by sintering a metal powder on a back metal plate, the sheet material is molded into a cylindrical shape an and formed into a sliding member. In addition, according to the technique described in Patent Literature 2, a cylindrical sintered material is press fitted into an inner periphery part of a cylindrical back metal to form a sliding member.
However, according to the technique described in Patent Literature 1, because the hardness of the back metal is also increased when performing a heat treatment on the sliding member, seizure sometimes occurred in the metal back part of the slide member when it is pressed into a housing. In addition, since the plate thickness of the sliding member thick overall, the level of difficulty when molding into a cylindrical shape was higher
That is, in the first aspect, a sliding member is provided including forming a bimetal sintered alloy by sintering a metal powder on a surface of a back metal which is a plate shaped metal member, molding the sintered alloy into a cylindrical bush, performing a heat treatment on the bush, and press-fitting the bush into a collar which is a cylindrical metal member.
In the third aspect, a bimetal sintered alloy is formed by sintering a metal powder on a surface of a back metal which is a plate shaped metal member; the sintered alloy is molded into a cylindrical bush, a heat treatment is performed on the bush, and the bush is press-fitted into a collar which is a cylindrical metal member.
First, a method of manufacturing a bearing 40 which is a sliding member according to the first embodiment is explained. The bearing 40 which is the sliding member according to the present embodiment is used in order to make a shaft which is inserted in a housing (no shown in the diagram) rotatable, and is used after pressing into the housing.
As is shown in
In the powder coating process shown in
Next, in the sintering-rolling process (step S02) shown in
Next, in a bush molding process (step S03) shown in
Next, in the heat treatment process (step S04) shown in
Next, in the press fitting process (step S05) shown in
Next, in oil-containing and finishing process (step S06) shown in
As described above, in the bearing 40 which is the sliding member related to the present embodiment, because the sintered layer 11 is formed by sintering a metal powder on the surface of the back metal 15 which is a plate shaped metal member, the bimetal sintered alloy 10 is formed. In addition, after the sintered alloy 10 is formed as the cylindrical bush 20 and heat treated, bush 20 is pressed into the collar 30 which is a cylindrical metal member, and the bearing 40 is formed. That is, the bearing 40 related to the present embodiment, as shown in
By adopting the structure as described above, seizure is less likely to occur on the outer circumferential surface of the bearing 40 when it is pressed into the housing. Specifically, because the heat treatment is not performed on the collar 30 arranged on the outer periphery of the bearing 40, the hardness of the collar 30 is smaller compared to the back metal 15 etc. As a result, it is possible to suppress the occurrence of seizure at a part of the collar 30 which contacts the housing when it is pressed into the housing.
In addition, by arranging the collar 30 which has not been heat treated on the outer periphery, it is possible to reduce the overall hardness of the bearing 40. In this way, it is possible, it is possible to reduce the strong contact stress which are generated locally on the bearing 40, wear resistance and seizure resistance are improved and the bearing hardly cracks.
In addition, even in the case when forming the bearing 40 with a large thickness (radial direction thickness), it is possible to make the thickness of the sintered alloy 10 constant by adjusting the radial thickness of the collar 30. As a result, it is possible to easily mold even when the thickness of the bearing 40 is large.
Furthermore, according to the present embodiment, since the sintered alloy 10 is formed from the plate shaped pre-sintered member 10b and the bush 20 is molded by bending this sintered alloy 10, it is possible to easily mold without requiring molding a cylindrical component just with the a sintered material. In addition, since it is not necessary to press-fit only a sintered material having a high brittleness to a back metal, cracking never occurs when a sintered material is pressed into the back metal.
In addition, since it is possible to form grooves or indents by a groove process or indent process using in the stage of the plate shaped sintered alloy 10, it is possible to improve sliding properties of the inner peripheral surface of the bearing 40 by easily forming grooves or indentations in the inner circumferential surface of the bearing 40.
As described above, according to the present embodiment, it is able to manufacture bearings 40 providing less seizure or crack occurring in the collar 30 which is the back metal part of the bearing 40 when it is pressed into the housing, and easy forming of grooves or indentations.
Next, bearing 140 which is a sliding member related to the second embodiment is explained. Furthermore, because the structure and manufacturing method of the bearing 140 explained in the present embodiment is substantially the same as the first embodiment, parts different to the first embodiment are mainly explained below.
The bearing 140 which is a sliding member related to the present embodiment is formed by composing of copper plating 130b with respect to a collar body 130a at a collar 130 which is a cylindrical metal member. An iron-based member is used for example for the collar body 130a. Copper plating 130b is performed using a copper-based plating. That is, the outer peripheral surface of the collar 130 in the present embodiment is plated with a copper-based material, and copper plating 130b arranged on the outer periphery surface of the collar 130 is formed as the outer peripheral surface of the bearing 140 which is a sliding member. That is, the bearing 140 related to the present embodiment, as is shown in
By adopting the structure as described above, seizure is less likely to occur on the outer peripheral surface of the bearing 140 when it is pressed into the housing. More specifically, in the collar 130 arranged on the outer periphery of the bearing 140, since a heat treatment is not performed on the outer peripheral side and copper plating 130b is performed which is a copper-based member having less hardness than an iron member, the hardness on the outside of the collar 130 is less compared to the back metal 15 etc. As a result, it is possible to suppress the occurrence of seizure in a part (copper plating 130b) of the collar 130 which contacts the housing when the bearing 140 is pressed into the housing.
Furthermore, (collar 30 which is a cylindrical metal member) of the present invention may be formed by cutting from a pipe or solid material, or may be formed by putting together pairs of ends of plate shaped (band shaped) member and it is possible to appropriately select such a formation method in terms of cost and equipment. However, it is preferred to create a cheaper collar by creating a cylindrical shape from a plate-like member. In this case, a finishing process is performed in a state where the seams are closed in order to provide interference for fastening. Furthermore, in the case of forming a collar by winding a plate-shaped member, the collar may be combined in clinch shape not only by binding seams by welding.
The case where the collar 30s formed from a plate shaped member and the seams bound in a clinch shape is explained below using
Next, is as shown in
Next, a manufacturing method of bearing 40 which is a sliding member related to the third embodiment is explained using
As is shown in
In the powder coating process shown in
Next, in the sintering-rolling process (step S02) shown in
Next, in a bush molding process (step S03) shown in
Next, in the heat treatment process (step S04) shown in
Next, in the press fitting process (step S05) shown in
Furthermore, since the heat treatment performed on bush 20 is not performed on collar 30, the surface hardness is less than the back metal 15 (for example, Vickers hardness 50 to 200). In addition, the inner diameter of the collar 30 is formed to the extent that the bush 20 can be press fitted and the same or slightly smaller than the outer diameter of the bush 20.
Next, in oil-containing and finishing process (step S06) shown in
As described above, as is shown in
By adopting the structure described above, because it is possible to form a groove 40a for lubricating oils by simply pressing bushes 20, 20 into the collar 30, there is no need to perform the grooving and indentation processes separately. That is, it is possible to easily form grooves or indentations in the inner circumferential surface of the bearing 40, and improve the sliding properties on the inner circumferential surface of the bearing 40.
In addition, by structuring the groove 40a as a gap formed between the bushes 20, 20, it is possible to easily adjust the width D of the groove 40a. Specifically, when press-fitting the bushes 20, 20 into the collar 30 to change the length of press-fitting in the axial direction of the collar 30, it is possible to change the width of the gap formed between the bushes 20, 20 and adjust the width D of the groove 40a. Alternatively, by changing the length of the bushes 20, 20, and changing the width of the gap formed between the bushes 20, 20, it is possible to adjust the width D of the groove 40a
In addition, in the bearing 40 which is a sliding member related to the present embodiment, by press-fitting two bushes 20, 20 which are cylindrical members from both sides of the collar 30 which is a cylindrical member, the gap formed between the bushes 20, 20 in the inner peripheral surface of the collar 30 is formed as a groove 40a for lubricating oils.
By adopting the structure described above, less effort is required as compared with the case of press-fitting the two bushes 20, 20 from one side of the collar 30 when press-fitting each bush 20, 20 into the collar 30, it is possible to former a groove 40a for lubricating oil in a simple configuration. That is, grooves or indentations can be easily formed in the inner circumferential surface of the bearing 40, and it is possible to improve the sliding properties on the inner circumference of the bearing 40.
In addition, in the bearing 40 which is a sliding member related to the present embodiment, as is shown in
By adopting the structure as described above, seizure is less likely to occur on the outer circumferential surface of the bearing 40 when it is pressed into the housing. Specifically, because the heat treatment is not performed on the collar 30 arranged on the outer periphery of the bearing 40, the surface hardness of the collar 30 is smaller compared to the back metal 15 etc. As a result, it is becomes possible to suppress the occurrence of seizure at the part of collar 30 which contacts the housing when it is pressed into the housing.
In addition, by arranging the collar 30 which has not been heat treated on the outer periphery, it is possible to reduce the overall hardness of the bearing 40. In this way, it is possible, it is possible to reduce the strong contact stress which are generated locally on the bearing 40, wear resistance and seizure resistance are improved and the bearing hardly cracks.
In addition, even in the case when forming the bearing 40 with a large thickness (radial direction thickness), it is possible to make the thickness of the sintered alloy 10 constant by adjusting the radial thickness of the collar 30. As a result, it is possible to easily mold even when the thickness of the bearing 40 is large. Furthermore, in the present embodiment, although two bushes 20, 20 are press-fitted into the collar 30, it is possible for example to press-fit three bushes 20, 20, 20 into the collar 30, form a gap using the groove 30a between each bush 20, 20, 20 or press-fit three or more bushes 20, 20 . . . into the collar 30
Next, the bearing 140 which is a sliding member related to the fourth embodiment is explained using
In the bearing 140 which is a sliding member related to the present embodiment, bush 120 is molded by bending a sintered alloy of a bimetal which is formed by sintering a metal powder on the surface of the back metal 15 which is a plate shaped metal member. At this time, a groove 140b is formed as shown in
Since it is possible to separately form a groove 140b for lubricating oil or the like even in the case where the number of the grooves 40a formed between the bushes 120,120 is insufficient, the structure related to the present embodiment is particularly useful even if the axial direction length of the bearing 140 is relatively long.
In this way, according to the present embodiment, by forming in advance a groove or indentation using groove or indenting processes in the stage of the plate shape sintered, a groove or indentation is formed in the inner circumferential surface of the bearing 140, and the sliding properties on the inner circumferential surface of the bearing 140 are improved.
According to the sliding member and the manufacturing method of the sliding member related to the present invention, because seizure is unlikely to occur in the back metal part of the slide member when it is pressed into a housing, it is difficult to crack, and easy to mold grooves or indentations, the invention is industrially useful when manufacturing a sliding member which is particularly excellent in both strength and workability.
Number | Date | Country | Kind |
---|---|---|---|
2012-079808 | Mar 2012 | JP | national |
This is the U.S. national stage of application No PCT/JP2013/58362, filed on Mar. 22, 2013, Priority under 35 U.S.C. §119(a) and 35 U.S.C. §365(b) is claimed from Japanese Application No. 2012-79808 filed, Mar. 30, 2012, the disclosure of which is also incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/058362 | 3/22/2013 | WO | 00 |