The present disclosure relates to clips used to support objects such as frames including picture frames and posters from walls or structure.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Clips which are inserted into picture or similar frames are known which provide a mount or engagement element that allows the clip to engage a frame such as a picture frame and to be supported by a structure such as a wall using a wire, hook, or similar device. Known clips allow for placement of the clip at varying locations along the frame, but frequently provide this function by biting into or yielding the material of the frame at a desired location. This damages the frame and makes continued adjustment of the clip location difficult.
In other known designs, the clip does not engage with the frame, but is merely positioned at a desirable location. The clip can subsequently slip from the desired location. This problem has been resolved by insertion of a fastener through the clip and frame, however, this solution introduces an additional part which can detrimentally affect the appearance of the frame, and also permanently damages the frame.
According to several embodiments of the present disclosure, a hanging clip system includes a clip having a head portion comprising first and second legs extending from the head portion. Each of the first and second legs includes an outwardly extending flange having a convexly curved upper surface and a flat surface facing away from the head portion. A gap between the first and second legs defines an angle created during a molding process so that the first and second legs can be elastically deflected toward each other to provide a biased condition of the legs. A frame member includes opposed inwardly curving arms which define a cavity adapted to receive the flanges of the clip and inner opposed walls which define a channel adapted to receive the legs.
According to further embodiments, a clip comprises a homogenous body created of a polymeric material. The clip includes a head portion having first and second legs extending from the head portion. Each of the first and second legs includes an outwardly extending flange having a convexly curved upper surface and a flat surface facing away from the head portion. A gap between the first and second legs defines an angle created during a molding process so that the first and second legs can be elastically deflected toward each other to provide a biased condition of the legs. A neck positioned between the head portion and the extending flanges defines a first junction with the head portion and a second junction with the extending flanges, with the neck defining a smooth curved surface.
According to still other embodiments, a hanging clip system has a clip comprising a head portion having first and second legs extending from the head portion. Each of the first and second legs includes an outwardly extending flange having a convexly curved upper surface and a flat surface facing away from the head portion. A gap between the first and second legs defines an angle created during a molding process so that the first and second legs can be elastically deflected toward each other to provide a biased condition of the legs. A frame member includes opposed inwardly curving arms which define a cavity adapted to receive the flanges of the clip. Inner opposed walls which define a channel are adapted to receive the legs.
According to other embodiments, a method for releasably coupling a clip to a frame member is provided.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Referring to
Referring to
Referring to FIGS. 1 and 5-6, clip 10 is adapted to be received in an extruded frame member 40, made for example from a metal such as aluminum or steel, or from a polymeric material. Frame member 40 includes opposed inwardly curving arms 42, 44 which define a cavity 46 adapted to receive flanges 18, 20 of clip 10. Inner opposed walls 48, 50 define a channel 52 adapted to receive legs 14, 16. Channel 52 is closed at one end by a wall 54 having a V-shaped notch 56. According to several embodiments, frame member 40 has a total height “F” of approximately 1.0 in (2.54 cm), a total width “G” of approximately 0.61 in (1.55 cm), an opening width “H” between arms 42, 44 of approximately 0.25 in (0.63 cm), a wall locating dimension “J” of approximately 0.35 in (0.89 cm), and a wall-to-wall spacing “K” of approximately 0.2 in (0.51 cm). A width “L” and a depth “M” of notch 56 can be approximately 0.02 and 0.01 in (0.05 and 0.02 cm) respectively. According to several embodiments, notch 56 defines an angle β of approximately 90 degrees. As further shown in
Referring more specifically to
Referring to
Referring to
As angle a decreases, the biasing force created increases a frictional engagement of first and second legs 14, 16 to further assist retention of clip 10. The neck 34 separating semispherical portion 12 from first and second legs 14, 16 provides a rotational sliding contact surface with the free ends of arms 42, 44 to promote rotation of clip 10 during installation. Because contact of the free ends of arms 42, 44 with neck 34 also provides support for clips 10, neck 34 further promotes frictional engagement of clips 10 with frame members 40. First and second legs 14, 16 can include smooth, rounded outward facing surfaces to reduce rotational friction between the first and second legs 14, 16 and the opposed walls 48, 50 when the first and second legs 14, 16 rotate. A curvature of each of the arms 42, 44 can be the same as a curvature of the convexly curved upper surfaces 22, 24. A curvature of each of the arms 42, 44 can also be varied at the discretion of the manufacturer from a curvature of convexly curved upper surfaces 22, 24. This difference in curvature permits frictional contact between extending flanges 18, 20 and arms 42, 44 to be increased or changed by increasing a surface area of convexly curved upper surfaces 22, 24 in contact with arms 42, 44 as the clip 10 is rotated from an installed to an engaged position.
Referring to
It is further noted that the geometry of semispherical portion 12 is provided for example only. Portion 12 can also have other geometric shapes, including but not limited to rectangular, triangular, polygonal, and the like within the scope of the present disclosure. According to several embodiments, material for clip 10 can be a polymeric material such as a polyamide material. The polymeric material selected can be molded such as by injection molding into the shape shown in
Clips 10 of the present disclosure offer several advantages. The opposed flanges 18, 20 which are separated by gap 32 have convexly curved surfaces 22, 24 which promote frictional engagement with the inner walls of similarly curved arms 42, 44 of frame member 40 when flanges 18, 20 are rotated following a sliding insertion of clip 10. To further assist the frictional contact of clips 10, contact of convexly curved surfaces 22, 24 with inner walls of arms 42, 44 also can promote contact of surfaces 26, 28 with cavity 46 facing surfaces of outwardly directed portions 48a, 50a of opposed walls 48, 50. Angle α created between first and second legs 14, 16 promotes an elastic biasing force when first and second legs 14, 16 are pressed toward each other during insertion of clip 10 into frame member 40. The biasing force also helps retain clips 10 within frame member 40. The neck 34 separating semispherical portion 12 from first and second legs 14, 16 provides a rotational sliding contact surface with the free ends of arms 42, 44 to promote rotation of clip 10 during installation. Because clips 10 are rotated to frictionally engage frame members 40, clips 10 are also releasable by rotation to the original orientation, which allows clips 10 to be moved to alternate locations, or removed entirely from frame members 40.