This application is the U.S. National Phase under 35 U.S.C. § 371 of International Application PCT/JP2019/040209, filed Oct. 11, 2019, which claims priority to Japanese Patent Application No. JP2018-200450, filed Oct. 24, 2018. The International Application was published under PCT Article 21(2) in a language other than English.
The present invention relates to a sliding member suitable for a mechanical seal, a bearing, and other sliding portions, for example. Specifically, the present invention relates to a sliding member for, e.g., a seal ring or a bearing for which friction on a sliding face needs to be reduced and fluid leakage from the sliding face needs to be prevented.
For maintaining sealability for a long period of time in a mechanical seal as one example of a sliding member, there is the technique of satisfying both of conflicting conditions of “sealing” and “lubrication.” For example, a technique has been known, in which at a pair of sliding members sliding relative to each other, a positive pressure generation groove is provided on a sealed fluid side of one sliding face and a negative pressure generation groove is provided on a leakage side, and each of the positive pressure generation groove and the negative pressure generation groove is communicated with the sealed fluid side and is separated from the leakage side by a seal face (see, e.g., Patent Document 1).
When the sliding members with the above-described configuration slide relative to each other, the sliding faces are pushed out by a positive pressure generated by the positive pressure generation groove provided on the sealed fluid side, and a fluid lubrication state in which a liquid film is interposed between the sliding faces is brought. Thus, sliding torque can be reduced. Moreover, pumping action for sucking fluid into a portion between the sliding faces from the leakage side is caused utilizing a negative pressure generated by the negative pressure generation groove provided on the leakage side, and therefore, a leakage amount can be extremely small.
However, in the above-described technique, the positive pressure generation groove needs to be provided on the sealed fluid side of the sliding face, and the negative pressure generation groove needs to be provided on the leakage side. This leads to a problem that a sliding face component is increased in size. Moreover, in the case of applying the above-described technique to equipment for rotation in both directions, a dynamic pressure generation mechanism for forward rotation and a dynamic pressure generation mechanism for backward rotation need to be provided, leading to a problem that a structure is complicated.
The present invention is intended to provide a compact sliding member which is configured so that sliding torque reduction and sealing function improvement can be realized and which is applicable to equipment for rotation in both directions.
In order to solve the above-described problems, a sliding member of a first aspect of the present invention is
a pair of sliding members sliding relative to each other at sliding faces, characterized in that
at least one of the sliding faces includes a negative pressure generation mechanism surrounded by a land portion and
a first branched portion arranged in the at least one of the sliding faces and branched from the negative pressure generation mechanism.
According to the first aspect, cavitation occurs due to pressure reduction in the negative pressure generation mechanism, and liquid is evaporated. Thus, sliding using gas with a small viscosity is dominant, and therefore, sliding torque can be reduced. Moreover, pumping action for sucking fluid into a portion between the sliding faces from a leakage side by a negative pressure in the negative pressure generation mechanism is obtained so that leakage can be suppressed extremely small. Further, a positive pressure is generated by a wedge effect at the first branched portion so that the sliding faces can be maintained in a fluid lubrication state. Sliding torque reduction and sealability improvement as the conflicting performances can be accomplished by the single negative pressure generation mechanism without the need for separately providing a positive pressure generation mechanism and a negative pressure generation mechanism as in the typical technique, and therefore, the sliding member can be compactified.
The sliding member according to a second aspect of the present invention is characterized by further including
a second branched portion arranged in the at least one of the sliding faces and branched from the first branched portion.
According to the second aspect, the first branched portion is further branched at the second branched portion, and therefore, the sliding member can be easily applied to equipment for rotation in both directions.
The sliding member according to a third aspect of the present invention is characterized in that
the first branched portion includes an overlap portion overlapping with an adjacent first branched portion in a circumferential direction.
According to the third aspect, the first branched portion includes the overlap portion overlapping with the adjacent first branched portion in the circumferential direction. Thus, a leakage flow from the first branched portion generating a high positive pressure to the negative pressure generation mechanism can be restricted, the use efficiency of the high positive pressure generated at the first branched portion can be enhanced, and the sliding faces can be maintained in the fluid lubrication state.
The sliding member according to a fourth aspect of the present invention is characterized in that
the second branched portion includes an overlap portion overlapping with an adjacent first branched portion in the circumferential direction.
According to the fourth aspect, the second branched portion includes the overlap portion overlapping with the adjacent first branched portion in the circumferential direction. Thus, a leakage flow from the second branched portion generating a high positive pressure to the negative pressure generation mechanism can be restricted, the use efficiency of the high positive pressure generated at the second branched portion can be enhanced, and the sliding faces can be maintained in the fluid lubrication state.
The sliding member according to a fifth aspect of the present invention is characterized in that
at least the negative pressure generation mechanism includes a guide groove extending from the negative pressure generation mechanism toward the first branched portion.
According to the fifth aspect, at least fluid flowing in a bottom portion of the negative pressure generation mechanism can be guided to a desired direction by the guide groove.
The sliding member according to a sixth aspect of the present invention is characterized by further including
a first branched portion extending in a clockwise direction and a first branched portion extending in a counterclockwise direction.
According to the sixth aspect, the first branched portion extending in the clockwise direction and the first branched portion extending in the counterclockwise direction are provided so that the sliding member can be easily applied to the equipment for rotation in both directions.
The sliding member according to a seventh aspect of the present invention is characterized in that
an end portion of the first branched portion is a narrowed groove portion.
According to the seventh aspect, liquid flowing in the first branched portion is throttled by the narrowed groove portion of the end portion such that the pressure thereof is increased, and therefore, the fluid lubrication state in which a liquid film is interposed between the sliding faces is brought. Thus, the sliding torque can be reduced.
The sliding member according to an eighth aspect of the present invention is characterized by further including
a second branched portion extending in the clockwise direction and a second branched portion extending in the counterclockwise direction.
According to the eighth aspect, the second branched portion extending in the clockwise direction and the second branched portion extending in the counterclockwise direction are provided, and therefore, the sliding member can be easily applied to the equipment for rotation in both directions.
The sliding member according to a ninth aspect of the present invention is characterized in that
the second branched portion is a narrowed groove portion.
According to the ninth aspect, liquid flowing in the second branched portion is throttled by the narrowed groove portion such that the pressure thereof is increased, and therefore, the fluid lubrication state in which the liquid film is interposed between the sliding faces is brought. Thus, the sliding torque can be reduced.
The sliding member according to a tenth aspect of the present invention is characterized in that
the first branched portion and the second branched portion are arranged symmetrically with respect to a radial axis connecting the center of the negative pressure generation mechanism in the circumferential direction and the center of rotation.
According to the tenth aspect, the branched portions are arranged symmetrically with respect to the radial axis, and therefore, a fluid lubrication effect and a pumping effect can be exerted regardless of forward rotation or backward rotation.
The sliding member according to an eleventh aspect of the present invention is characterized in that
the negative pressure generation mechanism includes multiple negative pressure generation mechanisms arranged at the sliding face.
According to the eleventh aspect, the negative pressure generation mechanisms and the branched portions can be optimally arranged according to the size of the sliding face.
The sliding member according to a twelfth aspect of the present invention is characterized by further including
a fluid introduction groove communicated with a sealed fluid side, a dynamic pressure generation mechanism communicated with the fluid introduction groove at one end and surrounded by the land portion at the other end, and an open groove provided in the land portion and communicated with the fluid introduction groove.
According to the twelfth aspect, fluid is supplied to the sliding faces from the fluid introduction groove. Thus, even when the fluid lubrication state is not sufficient in a low-speed rotation state such as start-up timing, the sliding faces S can be lubricated with the fluid supplied from the fluid introduction groove. Moreover, fluid taken into the dynamic pressure generation mechanism from the fluid introduction groove generates a high positive pressure by the wedge effect, and therefore, the sliding faces can be maintained in the fluid lubrication state.
The sliding member according to a thirteenth aspect of the present invention is characterized by further including
a dynamic pressure generation mechanism extending in the clockwise direction and a dynamic pressure generation mechanism extending in the counterclockwise direction.
According to the thirteenth aspect, the dynamic pressure generation mechanism extending in the clockwise direction and the dynamic pressure generation mechanism extending in the counterclockwise direction reliably generate a high positive pressure regardless of a rotation direction, and therefore, the sliding faces can be maintained in the fluid lubrication state.
The sliding member according to a fourteenth aspect of the present invention is characterized in that
the dynamic pressure generation mechanisms are arranged symmetrically with respect to the fluid introduction groove.
According to the fourteenth aspect, the dynamic pressure generation mechanisms are arranged symmetrically with respect to the fluid introduction groove, and therefore, the fluid lubrication effect and the pumping effect can be exerted regardless of forward rotation or backward rotation.
Hereinafter, an exemplary mode for carrying out this invention will be described based on an embodiment with reference to the drawings. Note that unless otherwise clearly described, the dimensions, materials, shapes, relative arrangement, etc. of components described in this embodiment are not intended to limit the claims of the present invention.
A sliding member according to a first embodiment of the present invention will be described with reference to
The stationary-side cartridge includes a housing 4 attached to a casing 9, an annular stationary-side seal ring 5 as another sliding member, a bellows 7 configured to seal the stationary-side seal ring 5 and the housing 4, and a coiled wave spring 6 configured to bias the stationary-side seal ring 5 to a rotating-side-seal-ring-3 side through the bellows 7, and is fixed to the casing 9 in a rotation direction and an axial direction.
The mechanical seal 1 having the above-described configuration prevents outflow of the sealed fluid from the outer peripheral side to the inner peripheral side due to sliding of a sliding face S of the rotating-side seal ring 3 and a sliding face S of the stationary-side seal ring 5 on each other. Note that
The materials of the rotating-side seal ring 3 and the stationary-side seal ring 5 are selected from, e.g., silicon carbide (SiC) with excellent abrasion resistance and carbon with excellent self-lubricating properties. For example, both of these rings may be made of SiC, or a combination of the SiC rotating-side seal ring 3 and the carbon stationary-side seal ring 5 may be employed.
As shown in
The branched portion 42 includes a branched base portion 43 branched from the negative pressure generation mechanism 41 toward the sealed fluid side in a radial direction and a branched end portion 44 (an end portion according to the present invention) extending from an end portion of the branched base portion 43 in a partner sliding face rotation direction (a counterclockwise direction). The branched end portion 44 is a bottomed groove portion whose width in the radial direction is gradually narrowed toward a downstream side, and includes a narrowed step 44a surrounded by the land portions and having a depth narrowed in a stepwise manner. The branched end portion 44 has an overlap portion Lp overlapping with the adjacent branched portion 42 in a circumferential direction.
The negative pressure generation mechanism 41 and the branched portions 42 are grooves having a depth of 0.1 μm to 10 μm. The depths of the negative pressure generation mechanism 41 and the branched portions 42 may be a constant depth, or may gradually decrease toward the narrowed step 44a of the branched end portion 44. Moreover, the negative pressure generation mechanism 41 is integrally formed in an annular shape, but may be divided into multiple portions with respect to the land portion in the circumferential direction.
When a partner-side sliding member (the rotating-side seal ring 3) rotates in a predetermined direction (the counterclockwise direction in
In a cavitation region, friction using gas with a small viscosity is dominant, and sliding torque can be reduced as compared to typical fluid lubrication with liquid. Moreover, the inside of the negative pressure generation mechanism 41 is under the negative pressure, and therefore, pumping action for sucking fluid into the negative pressure generation mechanism 41 from the leakage side is exerted so that leakage can be suppressed extremely small.
Even when the inside of the negative pressure generation mechanism 41 is in a cavitation state, entire fluid does not turn into gas, and a liquid flow is also present. Such liquid is heavier than gas, is gathered to a bottom portion of the negative pressure generation mechanism 41, and flows into the branched portions 42 due to influence of the centrifugal force. The fluid having flowed into the branched portion 42 flows to the downstream-side branched end portion 44, and a great positive pressure is generated by a throttle effect by the narrowed groove portion of the branched end portion 44 and a wedge effect by the narrowed step 44a. Such a positive pressure pushes out a portion between the sliding faces S, and a fluid lubrication state in which a liquid film is interposed between the sliding faces is brought. Thus, the sliding torque can be further reduced.
The branched end portion 44 of the branched portion 42 has the overlap portion Lp overlapping with the adjacent branched portion 42 in the circumferential direction. The centrifugal force by rotation of the rotating-side seal ring 3 and the overlap portion Lp can prevent a high pressure generated at the branched end portion 44 of the branched portion 42 from leaking to the negative pressure generation mechanism 41. Thus, the high pressure generated at the branched portion can be efficiently utilized to reliably push out the sliding faces S and maintain the fluid lubrication state.
As described above, the sliding member of the first embodiment provides the following advantageous effects.
A sliding member according to a second embodiment of the present invention will be described.
As shown in
As shown in
When a partner-side sliding member (a rotating-side seal ring 3) rotates in a predetermined direction (a counterclockwise direction in
A normal liquid flow is also present inside the negative pressure generation mechanism 41 in a cavitation state. Such liquid is heavier than gas, and is gathered to a bottom portion of the negative pressure generation mechanism 41. Thus, the guide grooves 45 are provided at the bottom portion of the negative pressure generation mechanism 41 so that the liquid can be efficiently guided from the negative pressure generation mechanism 41 to the branched portion 42. The liquid concentrated on the downstream-side branched end portion 44 of the branched portion 42 from the negative pressure generation mechanism 41 through the branched portion 42 generates a high positive pressure by a throttle effect by a narrowed groove portion of the branched end portion 44 and a wedge effect by a narrowed step 44a. Such a positive pressure pushes out a portion between the sliding faces S, and a fluid lubrication state in which a liquid film is interposed between the sliding faces is brought. Sliding torque can be reduced.
The guide groove 45 described herein is configured such that the predetermined number of consecutive bar-shaped grooves are arranged at the predetermined intervals to guide a flow from the negative pressure generation mechanism 41 to the branched end portion 44 of the branched portion 42, but the present invention is not limited to above. The guide grooves 45 may be independently arranged for the negative pressure generation mechanism 41, a branched base portion 43, and the branched end portion 44. For example, the guide groove 45 may be arranged in a concentrated manner at a location where a flow is concentrated at each of the negative pressure generation mechanism 41, the branched base portion 43, and the branched end portion 44 such that the flow is efficiently guided from the negative pressure generation mechanism 41 to the branched base portion 43 and the branched end portion 44. Note that the depth of the guide groove is greater than the depth of the negative pressure generation mechanism 41, and the depth of the negative pressure generation mechanism 41 is 0.1 μm to 10 μm while the guide groove is formed deeper by about 1 μm or more.
As described above, the sliding member of the second embodiment provides the following advantageous effect in addition to the first to fifth advantageous effects of the first embodiment:
the guide groove 45 arranged at the negative pressure generation mechanism 41, the branched base portion 43, and the bottom portion of the branched end portion 44 efficiently guide fluid from the negative pressure generation mechanism 41 to the branched base portion 43 and the branched end portion 44. The fluid guided to the branched end portion 44 generates a high positive pressure by a throttle effect by a narrowed groove portion of the branched end portion 44 and a wedge effect by a narrowed step 44a. Such a positive pressure pushes out the portion between the sliding faces S, and a fluid lubrication state in which a liquid film is interposed between the sliding faces is brought. Thus, sliding torque can be reduced.
A sliding member according to a third embodiment of the present invention will be described.
As shown in
In the land portion R1, the annular open groove 35 and the fluid introduction grooves 33 communicated with a sealed fluid side at one end and communicated with the open groove 35 at the other end are provided. A predetermined number (16 in the embodiment of
When a partner-side sliding member (a rotating-side seal ring 3) rotates in a predetermined direction (a counterclockwise direction in
The guide groove 45 provided at the negative pressure generation mechanism 41 and the branched portion 42 guide liquid in the cavitation to the branched portion 42. The liquid having guided to the branched portion 42 generates a high positive pressure by a throttle effect by a narrowed shape of a branched end portion 44 of the branched portion 42 and a wedge effect at a narrowed step 44a. Thus, the sliding faces S are pushed out so that the sliding faces S can be maintained in a fluid lubrication state.
Further, fluid taken into the dynamic pressure generation mechanism 31 from the fluid introduction groove 33 generates a high positive pressure by a wedge effect at the dead end portion 31b. Thus, the sliding faces S are pushed out so that a fluid lubrication effect for the sliding faces S can be further enhanced. Moreover, the multiple fluid introduction grooves 33 are provided such that fluid is supplied to the sliding faces S from the sealed fluid side at multiple locations. Thus, even when the fluid lubrication state is not sufficient in a low-speed rotation state such as start-up timing, the fluid supplied from the fluid introduction grooves 33 can lubricate the sliding faces S.
In addition, the open groove 35 is provided between the dynamic pressure generation mechanism 31 and each of the negative pressure generation mechanism 41 and the branched portion 42. The open groove 35 has the function of releasing a dynamic pressure (a positive pressure) generated in the dynamic pressure generation mechanism 31 to the same level as a pressure on the sealed fluid side and the function of releasing the positive pressure generated by the wedge effect at the narrowed step 44a of the branched end portion 44. With this configuration, high-pressure fluid from the dynamic pressure generation mechanism 31 flows into the negative pressure generation mechanism 41, and therefore, weakening of a pumping effect of the negative pressure generation mechanism 41 can be prevented and interference between the positive pressure generation function of the dynamic pressure generation mechanism 31 and the positive pressure generation function of the branched portion 42 can be prevented (see
As described above, the sliding member of the third embodiment provides the following advantageous effects in addition to the first to fourth advantageous effects of the first embodiment and the advantageous effect of the second embodiment.
The shapes of the branched portions 42 are all the same in the first to third embodiments, but the present invention is not limited to above. The sizes, shapes, or depths of all branched portions 42 may be different from each other, or the sizes, shapes, or depths of some of the branched portions 42 may be different from each other.
A sliding member according to a fourth embodiment of the present invention will be described.
As shown in
The first branched portion 52 includes a branched base portion 53 branched from the negative pressure generation mechanism 21 toward the sealed fluid side in a radial direction and a branched end portion 54 (an end portion according to the present invention) extending from an end portion of the branched base portion 53 in a counterclockwise direction. Moreover, the first branched portion 62 includes a branched base portion 63 branched from the negative pressure generation mechanism 21 toward the sealed fluid side in the radial direction and a branched end portion 64 (an end portion according to the present invention) extending from an end portion of the branched base portion 63 in a clockwise direction. The branched end portions 54, 64 are groove portions whose widths in the radial direction are gradually narrowed, and include narrowed steps 54a, 64a surrounded by the land portions and having depths narrowed in a stepwise manner. A predetermined number (three in the embodiment of the
Moreover, the first branched portion 72 branched from the negative pressure generation mechanism 21 toward the sealed fluid side in the radial direction is arranged between the first branched portion 52 and the first branched portion 62. The second branched portion 74 branched from an end portion of the first branched portion 72 in the counterclockwise direction and the second branched portion 84 branched from an end portion of the first branched portion in the clockwise direction are provided. The second branched portions 74, 84 are narrowed bottomed groove portions whose widths in the radial direction are gradually narrowed, and at end portions thereof, include narrowed steps 74a, 84a surrounded by the land portions and having depths narrowed in a stepwise manner.
The negative pressure generation mechanism 21, the first branched portions 52, 62, 72, and the second branched portions 74, 84 are grooves having depths of 0.1 μm to 10 μm. The depths of the negative pressure generation mechanism 21 and the branched portions 52, 62, 72, 74, 84 may be constant depths, or the branched end portions 54, 64 and the second branched portions 74, 84 may be gradually decreased toward the narrowed steps.
The first branched portions 52, 62 have overlap portions Lp each overlapping with the adjacent first branched portions 52, 62 in a circumferential direction. Moreover, the second branched portions 74, 84 have overlap portions Lp each overlapping with the adjacent first branched portions 52, 62 in the circumferential direction.
The guide grooves 55, 65 are provided at the negative pressure generation mechanism 21 and the bottom portions of the first branched portions 52, 62, 72 and the second branched portions 74, 84. A predetermined number of guide grooves 55, 65 are provided at the negative pressure generation mechanism 21 and the bottom portions of the first branched portions 52, 62, 72 and the second branched portions 74, 84, and as a whole, have a directionality from the negative pressure generation mechanism 21 toward tip end portions of the branched end portions 54, 64 and the second branched portions 74, 84.
When a partner-side sliding member (a rotating-side seal ring 3) rotates in the counterclockwise direction, fluid in the negative pressure generation mechanism 21 moves, due to viscosity thereof, to follow a movement direction of the rotating-side seal ring 3, and flows into the first branched portion 52. At this point, a flow from the first branched portion 62 to the negative pressure generation mechanism 21 is extremely small because of great influence of centrifugal force by rotation of the rotating-side seal ring 3. Thus, fluid flowing into the first branched portion 52 is greater than fluid supplied into the negative pressure generation mechanism 21, and the inside of the negative pressure generation mechanism 21 is brought into a negative pressure and cavitation occurs. In a cavitation region, friction using gas is dominant, and sliding torque of a sliding face S can be reduced as compared to typical fluid lubrication with liquid.
A liquid flow is also normally present inside the negative pressure generation mechanism 21 in a cavitation state. Such liquid is heavier than gas, and is gathered to a bottom portion of the negative pressure generation mechanism 21. Thus, the liquid can be efficiently guided from the negative pressure generation mechanism 21 to the first branched portions 52, 62, 72 and the second branched portions 74, 84 by the guide grooves 55, 65 provided at the negative pressure generation mechanism 21 and the bottom portions of the first branched portions 52, 62, 72 and the second branched portions 74, 84. The liquid guided from the negative pressure generation mechanism 21 to the first branched portions 52, 62, 72 and the second branched portions 74, 84 generates a high positive pressure by a throttle effect by narrowed shapes of the branched end portions 54, 64 and the second branched portions 74, 84 and a wedge effect by the narrowed steps 54a, 64a, 74a, 84a. Such a positive pressure pushes out the sliding faces S, and the sliding faces S can be maintained in a fluid lubrication state.
By the overlap portions Lp of the first branched portions 52, 62 each overlapping with the adjacent first branched portions 52, 62 in the circumferential direction and the overlap portions Lp of the second branched portions 74, 84 each overlapping with the adjacent first branched portions 52, 62 in the circumferential direction, the branched end portions 54, 64 and the second branched portions 74, 84 having a high pressure do not directly face the negative pressure generation mechanism 21. This can prevent high-pressure fluid from directly flowing into the negative pressure generation mechanism 21. With this configuration, a high positive pressure generated at the branched portions can be efficiently utilized to reliably maintain the fluid lubrication state of the sliding faces S.
The first branched portion 52 having the branched end portion 54 extending in the counterclockwise direction and the first branched portion 62 having the branched end portion extending in the clockwise direction are arranged symmetrically with respect to a radial axis connecting the center of the negative pressure generation mechanism 21 in the circumferential direction and the center of rotation. Similarly, the second branched portion 74 extending in the counterclockwise direction and the second branched portion 84 extending in the clockwise direction are also arranged symmetrically with respect to the radial axis connecting the center of the negative pressure generation mechanism 21 in the circumferential direction and the center of rotation. With this configuration, not only in a case where the rotating-side seal ring 3 rotates in the counterclockwise direction but also in a case where the rotating-side seal ring 3 rotates in the clockwise direction, the negative pressure generation mechanism 21 can exert pumping action for sucking fluid into the negative pressure generation mechanism 21 from the leakage side by the negative pressure, and the first branched portion 52, the first branched portion 62, the second branched portion 74, and the second branched portion 84 can generate a high pressure to exert a fluid lubrication effect.
As described above, the sliding member of the fourth embodiment provides the following advantageous effects.
Note that in the fourth embodiment, the example where the guide grooves are arranged at the negative pressure generation mechanism 21 and the bottom portions of the first branched portions 52, 62, 72 and the second branched portions 74, 84 has been described, but the guide grooves are not necessarily provided as in the first embodiment.
A sliding member according to a fifth embodiment of the present invention will be described.
As shown in
In the sealed-fluid-side land portion R1, the annular open groove 35 and the fluid introduction grooves 33, 34 communicated with the sealed fluid side at one end and communicated with the open groove 35 at the other end are provided. A predetermined number (eight each in the embodiment of
Note that each of the dynamic pressure generation mechanisms 31, 32 is a groove having a depth of 0.1 μm to 10 μm. The depths of the fluid introduction grooves 33, 34 and the open groove 35 are about 10 to 50 times as great as those of the dynamic pressure generation mechanisms 31, 32.
When a partner-side sliding member (a rotating-side seal ring 3) rotates in a counterclockwise direction, fluid taken into the dynamic pressure generation mechanism 31 from the fluid introduction groove 33 generates a high positive pressure by a wedge effect at the dead end portion 31b. With this configuration, the sliding faces S can be pushed out, and a fluid lubrication effect of the sliding faces S can be further enhanced. Moreover, the multiple fluid introduction grooves 33, 34 are provided, and therefore, fluid is supplied to the sliding faces S from the sealed fluid side at multiple locations. Thus, even when a fluid lubrication state is not sufficient in a low-speed rotation state such as start-up timing, the fluid supplied from the fluid introduction grooves 33, 34 can contribute to lubrication of the sliding faces S.
The dynamic pressure generation mechanism 31 extending in the counterclockwise direction and the dynamic pressure generation mechanism 32 extending in a clockwise direction are formed symmetrically with respect to the fluid introduction groove 33. Thus, even when the rotating-side seal ring 3 rotates in any of the clockwise direction and the counterclockwise direction, the sliding faces S are pushed out, and the fluid lubrication state in which a liquid film is interposed between the sliding faces S is brought. Consequently, sliding torque can be reduced.
In addition, the open groove 35 is provided among the dynamic pressure generation mechanisms 31, 32, the negative pressure generation mechanism 21, the first branched portions 52, 62, 72, and the second branched portions 74, 84. The open groove 35 has the function of releasing a dynamic pressure (a positive pressure) generated in the dynamic pressure generation mechanisms 31, 32 to the same level as a pressure on the sealed fluid side and the function of guiding, to the open groove 35, a high positive pressure generated by the wedge effect in the first branched portions 52, 62, 72 and the second branched portions 74, 84 to release the positive pressure to a high-pressure fluid side. With this configuration, high-pressure fluid from the dynamic pressure generation mechanisms 31, 32 flows into the negative pressure generation mechanism 21, and therefore, weakening of a pumping effect of the negative pressure generation mechanism 21 can be prevented and interference between the positive pressure generation function of the dynamic pressure generation mechanisms 31, 32 and the positive pressure generation function of the first branched portion 52 can be prevented (see
As described above, the sliding member of the fifth embodiment provides the following advantageous effects in addition to the first to sixth advantageous effects of the fourth embodiment.
Note that the example where the guide grooves are arranged at the negative pressure generation mechanism 21 and the bottom portions of the first branched portions 52, 62, 72 and the second branched portions 74, 84 has been described, but the guide grooves are not necessarily provided as in the first embodiment.
Moreover, the dynamic pressure generation mechanism 31 extending in the counterclockwise direction and the dynamic pressure generation mechanism 32 extending in the clockwise direction are arranged symmetrically with respect to the fluid introduction groove 33, but the present invention is not limited to above. The dynamic pressure generation mechanism 31 and the dynamic pressure generation mechanism 32 may have different shapes, sizes, and depths. The dynamic pressure generation mechanism 31 and the dynamic pressure generation mechanism 32 may be arranged shifted from the fluid introduction groove 33 in a radial direction.
A sliding member according to a sixth embodiment of the present invention will be described.
As shown in
The first branched portion 52 includes a branched base portion 53 branched from the negative pressure generation mechanism 21 toward the sealed fluid side in a radial direction and a branched end portion 54 (an end portion according to the present invention) extending from an end portion of the branched base portion 53 in a counterclockwise direction. Moreover, the first branched portion 62 includes a branched base portion 63 branched from the negative pressure generation mechanism 21 toward the sealed fluid side in the radial direction and a branched end portion 64 (an end portion according to the present invention) extending from an end portion of the branched base portion 63 in a clockwise direction. A predetermined number (five in the embodiment of the
Moreover, the first branched portion 72 branched from the negative pressure generation mechanism 21 toward the sealed fluid side in the radial direction is arranged between the first branched portion 52 and the first branched portion 62. The single second branched portion 74 branched from an end portion of the first branched portion 72 in the counterclockwise direction and the single second branched portion 84 branched from an end portion of the first branched portion 72 in the clockwise direction are provided.
In the present embodiment, the number of first branched portions 52 extending in the counterclockwise direction is greater than the number of first branched portions 62 extending in the clockwise direction. With this configuration, a sliding member suitable for equipment having a higher frequency of use in the counterclockwise direction and a lower frequency of use in the clockwise direction can be provided. a percentage between the number of first branched portions 52 extending in the counterclockwise direction and the number of first branched portions 62 extending in the clockwise direction can be determined according to specific use conditions.
Moreover, according to the frequency of use in a rotation direction, the first branched portion 52 extending in the counterclockwise direction and the first branched portion 62 extending in the clockwise direction may have different sizes, shapes, and depths, or the first branched portions 52 or the first branched portions 62 may have different shapes, sizes, and depths.
Similarly, according to the frequency of use in the rotation direction, the second branched portion 74 extending in the counterclockwise direction and the second branched portion 84 extending in the clockwise direction may have different numbers, sizes, shapes, and depths.
Further, the intensity of a fluid lubrication function can vary according to the rotation direction. For example, when the numbers of first branched portions 52 and second branched portions 74 extending in the counterclockwise direction are greater than the first branched portions 62 and the second branched portions 84 extending in the clockwise direction, the fluid lubrication function can be more enhanced in rotation in the counterclockwise direction than in rotation in the clockwise direction.
Note that in the sixth embodiment, the example where the guide grooves are arranged at the negative pressure generation mechanism 21 and the bottom portions of the first branched portions 52, 62, 72 and the second branched portions 74, 84 has been described, but the guide grooves are not necessarily provided as in the first embodiment.
The embodiments of the present invention have been described above with reference to the drawings, but specific configurations are not limited to these embodiments. Even changes and additions made without departing from the gist of the present invention are included in the present invention.
In the above-described embodiments, the outer peripheral side has been described as the sealed fluid side, and the inner peripheral side has been described as the leakage side. However, the present invention is not limited to above, and is also applicable to a case where the inner peripheral side is the sealed fluid side and the outer peripheral side is the leakage side.
The negative pressure generation mechanism, the land portion, and the guide groove are provided at the sliding face S of the stationary-side seal ring 5, but may be provided at the sliding face of the rotating-side seal ring 3.
Number | Date | Country | Kind |
---|---|---|---|
2018-200450 | Oct 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/040209 | 10/11/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/085122 | 4/30/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3085808 | Williams | Apr 1963 | A |
3232680 | Clark | Feb 1966 | A |
3410565 | Williams | Nov 1968 | A |
3466052 | Ludwig | Sep 1969 | A |
3499653 | Gardner | Mar 1970 | A |
3527465 | Guinard | Sep 1970 | A |
3656227 | Weinand | Apr 1972 | A |
3675935 | Ludwig | Jul 1972 | A |
3782737 | Ludwig | Jan 1974 | A |
3804424 | Gardner | Apr 1974 | A |
3855624 | Reinhoudt | Dec 1974 | A |
3870382 | Reinhoudt | Mar 1975 | A |
4406466 | Geary, Jr. | Sep 1983 | A |
4486026 | Furumura et al. | Dec 1984 | A |
4523764 | Albers | Jun 1985 | A |
4645414 | DeHart | Feb 1987 | A |
5092612 | Victor | Mar 1992 | A |
5133562 | Lipschitz | Jul 1992 | A |
5201531 | Lai | Apr 1993 | A |
5222743 | Goldswain | Jun 1993 | A |
5385409 | Ide | Jan 1995 | A |
5441283 | Pecht et al. | Aug 1995 | A |
5447316 | Matsui | Sep 1995 | A |
5492341 | Pecht | Feb 1996 | A |
5496047 | Goldswain | Mar 1996 | A |
5498007 | Kulkarni | Mar 1996 | A |
5501470 | Fuse | Mar 1996 | A |
5529318 | Fuse | Jun 1996 | A |
5556111 | Sedy | Sep 1996 | A |
5605339 | Pecht | Feb 1997 | A |
5664787 | Fuse et al. | Sep 1997 | A |
5702110 | Sedy | Dec 1997 | A |
5895051 | Bowers | Apr 1999 | A |
6142478 | Pecht | Nov 2000 | A |
6189896 | Dickey et al. | Feb 2001 | B1 |
6446976 | Key | Sep 2002 | B1 |
6575470 | Gacek | Jun 2003 | B1 |
6817766 | Gomyo | Nov 2004 | B2 |
7044470 | Zheng | May 2006 | B2 |
7510330 | Obara | Mar 2009 | B2 |
7568839 | Gotoh et al. | Aug 2009 | B2 |
7744094 | Yanagisawa | Jun 2010 | B2 |
7758051 | Roberts-Haritonov et al. | Jul 2010 | B2 |
7780399 | Garrison | Aug 2010 | B1 |
8162322 | Flaherty | Apr 2012 | B2 |
9062775 | Short et al. | Jun 2015 | B2 |
9353865 | Lattin | May 2016 | B2 |
9353867 | Itadani | May 2016 | B2 |
9371912 | Hosoe et al. | Jun 2016 | B2 |
9587745 | Itadani et al. | Mar 2017 | B2 |
9611938 | Itadani | Apr 2017 | B1 |
9677670 | Itadani et al. | Jun 2017 | B2 |
9829109 | Itadani et al. | Nov 2017 | B2 |
9845886 | Itadani | Dec 2017 | B2 |
9951873 | Inoue et al. | Apr 2018 | B2 |
9982784 | Osada et al. | May 2018 | B2 |
10054230 | Katori | Aug 2018 | B2 |
10072759 | Inoue et al. | Sep 2018 | B2 |
10113648 | Inoue et al. | Oct 2018 | B2 |
10190689 | Yoshida | Jan 2019 | B2 |
10337560 | Takunaga | Jul 2019 | B2 |
10337620 | Tokunaga et al. | Jul 2019 | B2 |
10352450 | Yamanaka et al. | Jul 2019 | B2 |
10408349 | Miyazaki | Sep 2019 | B2 |
10473220 | Tokunaga et al. | Nov 2019 | B2 |
10487944 | Itadani | Nov 2019 | B2 |
10487948 | Inoue et al. | Nov 2019 | B2 |
10495228 | Itadani et al. | Dec 2019 | B2 |
10648569 | Itadani | May 2020 | B2 |
10655736 | Itadani | May 2020 | B2 |
10704417 | Tokunaga et al. | Jul 2020 | B2 |
10781924 | Inoue et al. | Sep 2020 | B2 |
10883603 | Inoue et al. | Jan 2021 | B2 |
10883604 | Inoue et al. | Jan 2021 | B2 |
11009072 | Kimura et al. | May 2021 | B2 |
11009130 | Itadani | May 2021 | B2 |
11125335 | Kimura et al. | Sep 2021 | B2 |
11221071 | Sasaki | Jan 2022 | B2 |
11525512 | Kimura | Dec 2022 | B2 |
11530749 | Kimura | Dec 2022 | B2 |
11603934 | Imura | Mar 2023 | B2 |
11644100 | Kimura | May 2023 | B2 |
20020093141 | Wang | Jul 2002 | A1 |
20030178781 | Tejima | Sep 2003 | A1 |
20040080112 | Tejima | Apr 2004 | A1 |
20050135714 | Rahman | Jun 2005 | A1 |
20050141789 | Kita et al. | Jun 2005 | A1 |
20050212217 | Tejima | Sep 2005 | A1 |
20060093245 | Han | May 2006 | A1 |
20070296156 | Yanagisawa et al. | Dec 2007 | A1 |
20080100001 | Flaherty | May 2008 | A1 |
20080272552 | Zheng | Nov 2008 | A1 |
20100066027 | Vasagar | Mar 2010 | A1 |
20110101616 | Teshima | May 2011 | A1 |
20120018957 | Watanabe | Jan 2012 | A1 |
20130189294 | Koelle et al. | Jul 2013 | A1 |
20130209011 | Tokunaga | Aug 2013 | A1 |
20140203517 | Ferris | Jul 2014 | A1 |
20150115537 | Tokunaga | Apr 2015 | A1 |
20150115540 | Tokunaga | Apr 2015 | A1 |
20150123350 | Itadani | May 2015 | A1 |
20150184752 | Itadani | Jul 2015 | A1 |
20150226334 | Itadani | Aug 2015 | A1 |
20150240950 | Takahashi | Aug 2015 | A1 |
20150260292 | Inoue et al. | Sep 2015 | A1 |
20150377297 | Tokunaga et al. | Dec 2015 | A1 |
20150377360 | Itadani | Dec 2015 | A1 |
20160003361 | Takahashi | Jan 2016 | A1 |
20160033045 | Itadani et al. | Feb 2016 | A1 |
20160097457 | Sun et al. | Apr 2016 | A1 |
20160252182 | Itadani et al. | Sep 2016 | A1 |
20170009889 | Seki | Jan 2017 | A1 |
20170114902 | Itadani | Apr 2017 | A1 |
20170130844 | Itadani | May 2017 | A1 |
20170167615 | Itadani | Jun 2017 | A1 |
20170198814 | Colombo et al. | Jul 2017 | A1 |
20170234431 | Katori et al. | Aug 2017 | A1 |
20170241549 | Itadani | Aug 2017 | A1 |
20180051809 | Yoshida | Feb 2018 | A1 |
20180058584 | Miyazaki | Mar 2018 | A1 |
20180073394 | Tokunaga et al. | Mar 2018 | A1 |
20180128377 | Tokunaga et al. | May 2018 | A1 |
20180128378 | Tokunaga et al. | May 2018 | A1 |
20180135699 | Takunaga | May 2018 | A1 |
20180195618 | Itadani | Jul 2018 | A1 |
20190178386 | Arai | Jun 2019 | A1 |
20190301522 | Negishi et al. | Oct 2019 | A1 |
20190376558 | Kimura | Dec 2019 | A1 |
20200182299 | Kimura | Jun 2020 | A1 |
20210054935 | Kimura | Feb 2021 | A1 |
20210080006 | Sasaki | Mar 2021 | A1 |
20210116029 | Kimura | Apr 2021 | A1 |
20210116030 | Kimura | Apr 2021 | A1 |
20210116032 | Kimura | Apr 2021 | A1 |
20210164571 | Kimura | Jun 2021 | A1 |
20220010835 | Inoue | Jan 2022 | A1 |
20220099191 | Suzuki | Mar 2022 | A1 |
20220145992 | Miyazaki | May 2022 | A1 |
20220275828 | Inoue | Sep 2022 | A1 |
20230258184 | Suzuki | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
1364987 | Aug 2002 | CN |
2534429 | Feb 2003 | CN |
1401924 | Mar 2003 | CN |
101749431 | Jun 2010 | CN |
101776152 | Jul 2010 | CN |
201582390 | Sep 2010 | CN |
103267132 | Aug 2013 | CN |
103732958 | Apr 2014 | CN |
103791097 | May 2014 | CN |
104019237 | Sep 2014 | CN |
104165229 | Nov 2014 | CN |
105683632 | Jun 2016 | CN |
106439037 | Feb 2017 | CN |
206017723 | Mar 2017 | CN |
107166036 | Sep 2017 | CN |
107532724 | Jan 2018 | CN |
107676484 | Feb 2018 | CN |
108506494 | Sep 2018 | CN |
36 19 489 | Dec 1987 | DE |
4407453 | Sep 1995 | DE |
0637706 | Aug 1993 | EP |
0896163 | Feb 1999 | EP |
2520835 | Nov 2012 | EP |
2626604 | Aug 2013 | EP |
2977655 | Jan 2016 | EP |
3091258 | Nov 2016 | EP |
3299686 | Mar 2018 | EP |
3514414 | Jul 2019 | EP |
3922872 | Dec 2021 | EP |
3926187 | Dec 2021 | EP |
3926188 | Dec 2021 | EP |
3943765 | Jan 2022 | EP |
1509482 | May 1978 | GB |
36-6305 | May 1961 | JP |
S49-33614 | Sep 1974 | JP |
S54-77305 | Jun 1979 | JP |
S55-177549 | Dec 1980 | JP |
S57-146955 | Sep 1982 | JP |
58-109771 | Jun 1983 | JP |
58-137667 | Aug 1983 | JP |
S59-58252 | Apr 1984 | JP |
S60-107461 | Jul 1985 | JP |
S6182177 | May 1986 | JP |
S62-37572 | Feb 1987 | JP |
S63-033027 | Mar 1988 | JP |
S63-190975 | Aug 1988 | JP |
H01133572 | Sep 1989 | JP |
2-236067 | Sep 1990 | JP |
3-14371 | Feb 1991 | JP |
3-35372 | Apr 1991 | JP |
3-41267 | Apr 1991 | JP |
3-41268 | Apr 1991 | JP |
H04-73 | Jan 1992 | JP |
H04-145267 | May 1992 | JP |
H04-96671 | Aug 1992 | JP |
H05-90048 | Dec 1993 | JP |
H05322050 | Dec 1993 | JP |
H07-55016 | Mar 1995 | JP |
H08-89489 | Apr 1996 | JP |
H09-503276 | Mar 1997 | JP |
H09-329247 | Dec 1997 | JP |
H10-38093 | Feb 1998 | JP |
H10-281299 | Oct 1998 | JP |
2000-179543 | Jun 2000 | JP |
2001-295833 | Oct 2001 | JP |
2001-317638 | Nov 2001 | JP |
2003-161322 | Jun 2003 | JP |
2003-343741 | Dec 2003 | JP |
2004-003578 | Jan 2004 | JP |
2005-188651 | Jul 2005 | JP |
2005-58051 | Dec 2005 | JP |
2006-9828 | Jan 2006 | JP |
2006-022834 | Jan 2006 | JP |
2006-77899 | Mar 2006 | JP |
2008-144864 | Jun 2008 | JP |
2009-250378 | Oct 2009 | JP |
2010-133496 | Jun 2010 | JP |
2010-216587 | Sep 2010 | JP |
2011-185292 | Sep 2011 | JP |
2011196429 | Oct 2011 | JP |
2012-2295 | Jan 2012 | JP |
5271858 | May 2013 | JP |
WO2014042045 | Mar 2014 | JP |
2016-80090 | May 2016 | JP |
2017-141961 | Aug 2017 | JP |
6444492 | Dec 2018 | JP |
2019-15401 | Jan 2019 | JP |
201913446 | Jan 2019 | JP |
WO 9506832 | Mar 1995 | WO |
2012046749 | Apr 2012 | WO |
WO 2014024742 | Feb 2014 | WO |
2014050920 | Apr 2014 | WO |
WO 2014103630 | Jul 2014 | WO |
WO 2014112455 | Jul 2014 | WO |
WO2014103631 | Jul 2014 | WO |
WO 2014148316 | Sep 2014 | WO |
2014174725 | Oct 2014 | WO |
WO 2016009408 | Jan 2016 | WO |
WO 2016035860 | Mar 2016 | WO |
WO 2016167262 | Oct 2016 | WO |
WO 2016186019 | Nov 2016 | WO |
WO2016203878 | Dec 2016 | WO |
WO 2017002774 | Jan 2017 | WO |
WO 2018034197 | Feb 2018 | WO |
WO 2018105505 | Jun 2018 | WO |
WO2018139231 | Aug 2018 | WO |
WO2018139232 | Aug 2018 | WO |
Entry |
---|
Chinese Office Action issued in application No. 201980065303.2 (with translation), dated Oct. 10, 2022 (13 pgs). |
European Official Action issued in related European Patent Application Serial No. 19914452.8, dated Oct. 5, 2022, 10 pages. |
European Official Action issued in related European Patent Application Serial No. 20756664.7, dated Oct. 14, 2022, 8 pages. |
European Official Action issued in related European Patent Application Serial No. 20759684.2, dated Oct. 17, 2022, 7 pages. |
Korean Office Action issued in application No. 10-2021-7019130 (with translation), dated Oct. 22, 2022 (13 pgs). |
Korean Office Action issued in application No. 10-2021-7007194 (with translation), dated Nov. 7, 2022 (14 pgs). |
Korean Office Action issued in application No. 10-2021-7009776 (with translation), dated Dec. 12, 2022 (19 pgs). |
Notice of Allowance issued in U.S. Appl. No. 17/257,260, dated Nov. 23, 2022, 9 pages. |
Chinese Office Action issued in application No. 201980082245.4 (with translation), dated Aug. 3, 2023, 25 pages. |
European Official Action issued in application No. 19876680.0, dated Aug. 24, 2023, 8 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2022-7002564, dated Jun. 27, 2023, 11 pages with translation. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7028347, dated Jun. 22, 2023, 11 pages with translation. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7009776, dated Jun. 28, 2023, 8 pages with translation. |
Official Action issued in related U.S. Appl. No. 17/420,660, dated Sep. 13, 2023, 10 pages. |
Notice of Allowance issued in related U.S. Appl. No. 17/296,466, dated Jul. 24, 2023, 11 pages. |
Notice of Allowance issued in related U.S. Appl. No. 17/259,336, dated Sep. 19, 2023, 8 pages. |
Chinese Office Action issued in application No. 201980076998.4 (with translation), dated Jan. 18, 2023, 12 pages. |
Chinese Office Action issued in application No. 201980059152.X (with translation), dated Oct. 10, 2022, 14 pages. |
Chinese Office Action issued in application No. 202080012994.2(with translation), dated Feb. 2, 2023, 13 pages. |
Chinese Office Action issued in application No. 202080012994.2(with translation), dated Apr. 24, 2023, 12 pages. |
Chinese Office Action issued in application No. 201980082245.4 (with translation), dated Feb. 16, 2023, 23 pages. |
European Official Action issued in application No. 19869466.3, dated Mar. 16, 2023, 7 pages. |
European Official Action issued in application No. 22212136.0, dated Mar. 15, 2023, 8 pages. |
European Official Action issued in application No. 19850900.2, dated Mar. 28, 2023, 4 pages. |
European Official Action issued in application No. 23155551.7, dated Feb. 28, 2023, 7 pages. |
European Official Action issued in application No. 19888532.9, dated Mar. 7, 2023, 3 pages. |
European Official Action issued in application No. 23158438.4, dated May 15, 2023, 11 pages. |
Japanese Decision of Refusal issued in application No. 2021-502065, dated May 23, 2023, 8 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7002193, dated Jan. 11, 2023, 11 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7022185, dated Apr. 6, 2023, 12 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7016898, dated Feb. 16, 2023, 13 pages. |
Official Action issued in related U.S. Appl. No. 17/413,466, dated Apr. 12, 2023, 11 pages. |
Official Action issued in related U.S. Appl. No. 17/296,466, dated Apr. 12, 2023, 9 pages. |
Official Action issued in related U.S. Appl. No. 17/428,909, dated Apr. 21, 2023, 8 pages. |
Official Action issued in related U.S. Appl. No. 17/628,158, dated May 15, 2023, 14 pages. |
Chinese Office Action issued in application No. 201980059152.X (with translation), dated May 8, 2023, 11 pages. |
European Search Report issued in application No. 20847261.3, dated Jul. 17, 2023, 8 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7028879, dated Jun. 28, 2023, 10 pages. |
Official Action issued in related U.S. Appl. No. 17/428,909, dated Jul. 25, 2023, 8 pages. |
Notice of Allowance issued in related U.S. Appl. No. 17/296,466, dated Jul. 24, 2023, 9 pages. |
Definition of groove by Merriam Webster. |
Chinese Office Action issued in application No. 201380070532.6 (with translation), dated Jan. 28, 2016 (13 pgs). |
Chinese Office Action issued in application No. 201380070532.6 (with translation), dated Sep. 20, 2016 (12 pgs). |
Second Office Action issued by the State Intellectual Property Office of China, mailed Aug. 29, 2016, for Chinese counterpart application No. 201480002574.0, 8 pages. |
First Notification of Reason for Refusal issued by the State Intellectual Property Office of China, mailed Dec. 24, 2015, with a search report for Chinese counterpart application No. 201480002574.0, 11 pages. |
Office Action issued in U.S. Appl. No. 14/431,733, dated Apr. 29, 2016 (22 pgs). |
Office Action issued in U.S. Appl. No. 14/431,733, dated Aug. 18, 2017 (13 pgs). |
Office Action issued in U.S. Appl. No. 14/431,733, dated Mar. 31, 2017 (14 pgs). |
Office Action issued in U.S. Appl. No. 14/431,733, dated Oct. 6, 2016 (12 pgs). |
Office Action issued in U.S. Appl. No. 15/419,989, dated Jan. 26, 2018 (20 pgs). |
Office Action issued in U.S. Appl. No. 15/419,970, dated May 11, 2018 (17 pgs). |
Office Action issued in U.S. Appl. No. 15/419,970, dated Jan. 23, 2018 (21 pgs). |
Office Action issued in U.S. Appl. No. 15/842,862, dated Jun. 5, 2019 (37 pgs). |
Office Action issued in U.S. Appl. No. 15/842,855, dated Mar. 12, 2020 (11 pgs). |
Office Action issued in U.S. Appl. No. 15/842,855, dated Jun. 29, 2020, 16 pages. |
Office Action issued in U.S. Appl. No. 15/842,858, dated Mar. 31, 2020 (10 pgs). |
Office Action issued in U.S. Appl. No. 15/842,859, dated Apr. 8, 2020 (12 pgs). |
Notice of Allowance issued in U.S. Appl. No. 15/419,970, dated Aug. 9, 2018 (16 pgs). |
Notice of Allowance issued in U.S. Appl. No. 14/431,733, dated Feb. 23, 2018 (22 pgs). |
Notice of Allowance issued in U.S. Appl. No. 15/419,989, dated Jul. 23, 2018 (11 pgs). |
Notice of Allowance issued in U.S. Appl. No. 15/842,862, dated Sep. 30, 2019, 15 pages. |
Japanese Office Action (w/translation) issued in application 2018-159877, dated Jun. 13, 2019 (7 pgs). |
International Search Report issued in application No. PCT/JP2013/084029, dated Mar. 25, 2014 (4 pgs). |
International Preliminary Report on Patentability issued in application No. PCT/JP2013/084029, dated Nov. 5, 2015 (8 pgs). |
International Search Report and Written Opinion issued in PCT/JP2014/050402, dated Feb. 10, 2014, with English translation, 12 pages. |
International Preliminary Report on Patentability issued in PCT/JP2014/050402, dated Jul. 21, 2015, 4 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/045728, dated Dec. 17, 2019, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/045728, dated May 25, 2021, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/047890, dated Feb. 10, 2020, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/047890, dated Aug. 10, 2021, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/049870, dated Mar. 10, 2020, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/049870, dated Jun. 16, 2021, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/005260, dated Apr. 7, 2020, with English translation, 16 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/005260, dated Aug. 10, 2021, 9 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/006421, dated Apr. 21, 2020, with English translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/006421, dated Aug. 10, 2021, 6 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/017170, dated Jun. 2, 2020, with translation, 13 pages. |
International Preliminary Report on Patentability issued in PCT/JP2020/027005, dated Feb. 1, 2022, 4 pages. |
International Search Report and Written Opinion issued in PCT/JP2020/027005, dated Sep. 1, 2020, with English translation, 11 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/032723, dated Mar. 2, 2021, 6 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/032723, dated Nov. 5, 2019, with English translation, 17 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/029771, dated Feb. 2, 2021, 7 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/029771, dated Sep. 17, 2019, with English translation, 20 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/040209, dated Apr. 27, 2021, 6 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/040209, dated Dec. 24, 2019, with English translation, 17 pages. |
International Preliminary Report on Patentability issued in PCT/JP2019/038155, dated Mar. 23, 2021, 6 pages. |
International Search Report and Written Opinion issued in PCT/JP2019/038155, dated Nov. 19, 2019, with English translation, 18 pages. |
Chinese Office Action issued in application No. 201980087670.2 (with translation), dated Jul. 1, 2022 (17 pgs). |
Chinese Office Action issued in application No. 201980043720.7 (with translation), dated Jun. 6, 2022 (12 pgs). |
Chinese Office Action issued in application No. 202080014381.2 (with translation), dated Aug. 11, 2022 (15 pgs). |
Chinese Office Action issued in application No. 202080012994.2 (with translation), dated Aug. 29, 2022 (14 pgs). |
European Official Action issued in related European Patent Application Serial No. 19869466.3, dated May 19, 2022, 9 pages. |
European Official Action issued in related European Patent Application Serial No. 19876680.0, dated Jun. 3, 2022, 8 pages. |
European Official Action issued in related European Patent Application Serial No. 19888532.9, dated Jul. 8, 2022, 7 pages. |
European Official Action issued in related European Patent Application Serial No. 19899646.4, dated Aug. 12, 2022, 9 pages. |
Korean Office Action issued in application No. 10-2020-7037305 (with translation), dated Jun. 24, 2022 (17 pgs). |
Korean Office Action issued in application No. 10-2021-7002193 (with translation), dated Jul. 18, 2022 (13 pgs). |
Office Action issued in U.S. Appl. No. 17/257,260, dated Jul. 6, 2022 (12 pgs). |
International Search Report (ISR) mailed Dec. 24, 2019, issued for International application No. PCT/JP2019/040209. (2 pages). |
European Official Action issued in related European Patent Application Serial No. 19850900.2, dated Mar. 31. 2022, 11 pages. |
European Official Action issued in related European Patent Application Serial No. 19843273.4, dated Mar. 24, 2022, 9 pages. |
Chinese Office Action issued in application No. 201980076998.4 (with translation), dated Sep. 29, 2023, 7 pages. |
European Official Action issued in application No. 20759684.2, dated Sep. 25, 2023, 6 pages. |
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7000686, dated Aug. 22, 2023, 6 pages with translation. |
Official Action issued in related U.S. Appl. No. 17/429,896, dated Oct. 10, 2023, 14 pages. |
U.S. Appl. No. 17/257,260, filed Dec. 30, 2020, Okada. |
U.S. Appl. No. 17/259,336, filed Jan. 11, 2021, Imura. |
U.S. Appl. No. 17/275,505, filed Mar. 11, 2021, Tokunaga et al. |
U.S. Appl. No. 17/296,466, filed May 24, 2021, Inoue et al. |
U.S. Appl. No. 17/413,466, filed Jun. 11, 2021, Imura et al. |
U.S. Appl. No. 17/420,660, filed Jul. 2, 2021, Suzuki et al. |
U.S. Appl. No. 17/428,909, filed Aug. 5, 2021, Tokunaga et al. |
U.S. Appl. No. 17/429,896, filed Aug. 10, 2021, Suzuki et al. |
U.S. Appl. No. 17/628,158, filed Jan. 18, 2022, Inoue et al. |
Official Action issued in related U.S. Appl. No. 17/275,505, dated Nov. 1, 2023, 7 pages. |
Official Action issued in related U.S. Appl. No. 17/275,505, dated Feb. 9, 2024, 9 pages. |
Notice of Allowance issued in related U.S. Appl. No. 17/420,660 dated Feb. 14, 2024, 8 pages. |
Notice of Allowance issued in related U.S. Appl. No. 17/429,896 dated Mar. 6, 2024, 10 pages. |
Korean Official Action issued in related application 10-2022-7002564, dated Dec. 18, 2023, with translation 6 pages. |
European Official Action issued in related application 23216949.0, dated Mar. 11, 2024, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20210355992 A1 | Nov 2021 | US |