Sliding member

Information

  • Patent Grant
  • 11821462
  • Patent Number
    11,821,462
  • Date Filed
    Thursday, August 22, 2019
    4 years ago
  • Date Issued
    Tuesday, November 21, 2023
    7 months ago
Abstract
In a pair of sliding members (3, 5) sliding relative to each other on sliding surfaces (S), at least one of the sliding surfaces (S) includes a dynamic pressure generation mechanism (11), and the curvature of the dynamic pressure generation mechanism (11) is set to increase in proportion to the flow path length of the dynamic pressure generation mechanism (11). The sliding member can exhibit a pumping action even at low-speed rotation and can exhibit sealing function and lubrication function.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the U.S. National Phase under 35 U.S.C. § 371 of International Application PCT/JP2019/032723, filed Aug. 22, 2019, which claims priority to Japanese Patent Application No. JP2018-157873, filed Aug. 24, 2018. The International Application was published under PCT Article 21(2) in a language other than English.


TECHNICAL FIELD

The present invention relates to a sliding member suitable for, for example, mechanical seals, bearings, and other slide parts. In particular, the present invention relates to a sliding member such as a sealing ring or a bearing required to reduce friction on sliding surfaces and to prevent leakage of the fluid from the sliding surfaces.


BACKGROUND ART

In a mechanical seal which is an example of a sliding member, in order to maintain sealing performance in the long term, there is a technique for balancing conflicting conditions of “sealing” and “lubrication”. For example, in a pair of sliding members that slide relative to each other, those in which a spiral groove is provided on a sliding surface of a sliding component, and using a pumping action of the spiral groove, a sealed fluid that is likely to leak to a low-pressure fluid side is pushed back to the sealed fluid side, thereby improving sealing function of the sliding surface are known (for example, see Patent Document 1).


CITATION LIST
Patent Document



  • Patent Document 1: JP 61-82177 U



SUMMARY OF THE INVENTION
Problem to be Solved by the Invention

However, in the above technique, the pumping action of the spiral groove is exhibited only at above a certain rotating speed, and therefore a low-speed rotating equipment could not obtain sufficient sealing effect even if the spiral groove is provided on the sliding surface.


The present invention has an object to provide a sliding member that can exhibit a pumping action even at low-speed rotation and can exhibit sealing function and lubrication function.


Means for Solving Problem

To solve the above problem, a sliding member according to a first embodiment of the present invention is a pair of sliding members that slide relative to each other on sliding surfaces, and is characterized in that:


at least one of the sliding surfaces includes a dynamic pressure generation mechanism, and the curvature of the dynamic pressure generation mechanism increases according to the flow path length from an inlet opening of the dynamic pressure generation mechanism.


According to the first aspect, the shape of the dynamic pressure generation mechanism is such that the curvature is small at the inlet opening of the dynamic pressure generation mechanism (the curvature radius is large) and the curvature is increased in proportion to the flow path length from the inlet opening of the dynamic pressure generation mechanism (the curvature radius is small). Thereby, the difference between the angle at which the fluid flows into the dynamic pressure generation mechanism and the angle of the inlet opening of the dynamic pressure generation mechanism can be reduced. Moreover, as the fluid within the dynamic pressure generation mechanism flows to the flow path downstream side, the rotational velocity of the fluid is efficiently converted into the radial velocity. Thereby, it is possible to reduce a loss in inflow when the fluid flows into the inlet opening of the dynamic pressure generation mechanism, and it is possible to generate a pumping action even at low-speed rotation.


The sliding member according to a second aspect of the present invention is characterized in that the angle between an inner circumferential edge of the sliding surface and the inlet opening of the dynamic pressure generation mechanism is set to from 0° to 45°.


According to the second aspect, an angle θ1 between an inner circumferential edge 5b of the sliding surface S and the inlet opening of the dynamic pressure generation mechanism is 0°≤θ1≤ to 45°, thereby it is possible to extremely reduce a loss in inflow when the fluid flows into the dynamic pressure generation mechanism.


The sliding member according to a third aspect of the present invention is characterized in that the shape of the flow path is represented by the following formulas:









P
=


P
0

+

h




0
S



e

j

ϕ




dS








(

Formula


1

)








ϕ=ϕ0vS+ϕuS2  (Formula 2)










S
=


s
h




(

0
<
S
<
1

)



,




(

Formula


3

)








where P is a position vector of a point on the dynamic pressure generation mechanism, P0 is a position vector of the inlet opening of the dynamic pressure generation mechanism, s is a flow path length from P0 to P, h is an entire length of the flow path of the dynamic pressure generation mechanism, S is what s is normalized by h, ϕ is a tangential angle at P, i=√−1 is an imaginary unit, ϕ0 is a tangential angle at P0, ϕv is an increment of the tangential angle to ϕ0 in h in a circular arc of the length h having ϕ0, and ϕu is an increment of the tangential angle to ϕv in h.


According to the third aspect, easily by means of the above formulas, it is possible to reduce a loss in inflow when the fluid flows into the inlet opening of the dynamic pressure generation mechanism, and it is possible to generate a pumping action even at low-speed rotation.


The sliding member according to a fourth aspect of the present invention is characterized in that the flow path is such that one end communicates with a leakage side and the other end is surrounded by a land portion.


According to the fourth aspect, since the dynamic pressure generation mechanism exhibits a pumping action even at low-speed, even when dynamic pressure by the dynamic pressure generation mechanism is not sufficiently generated at low-speed, the fluid flowed into the dynamic pressure generation mechanism can generate positive pressure by a wedge effect, and therefore it is possible to maintain the sliding surface at a fluid lubrication state even at low-speed rotation.


The sliding member according to a fifth aspect of the present invention is characterized in that the flow path is made of a groove portion.


According to the fifth aspect, the dynamic pressure generation mechanism can be easily constituted from the groove portion.


The sliding member according to a sixth aspect of the present invention is characterized in that the flow path is a pseudo flow path made of a dimple group consisting of a plurality of dimples.


According to the sixth aspect, the dynamic pressure generation mechanism can be easily constituted from the dimple group.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a vertical cross-sectional view showing an example of a mechanical seal including a sliding member according to the present invention.



FIG. 2 is a drawing showing a sliding surface of the sliding member taken along the arrow W-W in FIG. 1.



FIGS. 3A and 3B are drawings for explaining a difference between a dynamic pressure generation mechanism according to the present invention (FIG. 3A) and a conventional spiral-shaped dynamic pressure generation mechanism (FIG. 3B).





DESCRIPTION OF EMBODIMENTS

Hereinafter with reference to the drawings, modes for carrying out the present invention will be described illustratively based on an embodiment. However, the dimensions, materials, shapes, relative arrangements, and others of components described in the embodiment are not intended to limit the scope of the present invention only to them unless otherwise described explicitly.


Referring to FIG. 1 to FIG. 3A, as to a sliding member according to the present invention, a mechanical seal which is an example of the sliding member will be described. In a first embodiment, the outer circumferential side of the sliding member constituting the mechanical seal is described as a sealed fluid side and the inner circumferential side is described as a leakage side.


A mechanical seal 1 in FIG. 1 includes a rotating-side sealing ring 3 integrally rotatable with a sleeve 2 mounted on a rotating shaft 9 side, a circular-ring shaped stationary-side sealing ring 5 which is the other slide component provided in a state of being axially movable to a casing 4 and non-rotatable, a coiled wave spring 6 axially biasing the stationary-side sealing ring 5, and a bellows 7 which seals the stationary-side sealing ring 5, and mirror-finished sliding surfaces S slide in close contact with each other.


In the mechanical seal 1, the rotating-side sealing ring 3 and the stationary-side sealing ring 5 have the sliding surfaces S formed radially, and the mechanical seal 1 prevents a sealed fluid from flowing out from the outer circumferential side of the sliding surface S to the leakage side on the inner circumferential side at each other's sliding surfaces S.


In addition, in FIG. 1, a case where the width of the sliding surface of the rotating-side sealing ring 3 is wider than the width of the sliding surface of the stationary-side sealing ring 5 is shown, but the present invention is not limited thereto, and of course can be applied to the opposite case.


Although the materials of the rotating-side sealing ring 3 and the stationary-side sealing ring 5 are selected from silicon carbide (SiC) excellent in wear resistance, carbon excellent in self-lubricity and the like, for example, both may be SiC or combinations of SiC as the rotating-side sealing ring 3 and carbon as the stationary-side sealing ring 5 are possible.


As shown in FIG. 2, on the sliding surface S of the stationary-side sealing ring 5, a predetermined number (eighteen in the embodiment of FIG. 2) of dynamic pressure generation mechanisms 11 are arranged. The dynamic pressure generation mechanism 11 is an arcuate groove portion which is convexed toward the leakage side of the sliding surface S, communicates with the leakage side via an inlet opening 11a opened to a circumferential edge 5b on the leakage side, and has a toe part 11b surrounded by a land portion at the sealed fluid side and thus is isolated from the sealed fluid side.


The dynamic pressure generation mechanism 11 has a shape in which the curvature of the dynamic pressure generation mechanism 11 continuously increases toward the toe part 11b (the downstream side) from the inlet opening 11a (the upstream side). The shape of a center line of the dynamic pressure generation mechanism 11 expressed in polar coordinate system is represented by the following Formula (1) to Formula (3):









P
=


P
0

+

h




0
S



e

j

ϕ




dS








(

Formula


1

)








ϕ=ϕ0vS+ϕuS2  (Formula 2)










S
=


s
h




(

0
<
S
<
1

)



,




(

Formula


3

)








where P0 is a position vector of a starting point (the inlet opening 11a of the dynamic pressure generation mechanism 11), P is a position vector of a point on the dynamic pressure generation mechanism 11, s is a length (m) of a curved line from P0 to P, h is an entire length (m) of a flow path of the dynamic pressure generation mechanism 11, S is what s is normalized by the entire length h of the flow path, ϕ is a tangential angle (rad) at P of the dynamic pressure generation mechanism 11, i=√−1 is an imaginary unit, ϕ0 is an initial direction (a tangential angle (rad) of the dynamic pressure generation mechanism 11 at P0), ϕv is an increment (rad) of the tangential angle to ϕ0 in h in a circular arc of the length h having the initial direction ϕ0, and ϕu is an increment (rad) of the tangential angle to ϕv in h of the dynamic pressure generation mechanism 11. That is, the tangential angle ϕ=ϕ0vu in h (S=1).


For example, the dynamic pressure generation mechanism 11 is defined by the above four parameters h, ϕ0, ϕv, and ϕu. In addition, when both ϕ0 and ϕv are zero, the dynamic pressure generation mechanism 11 coincides with an equiangular spiral. When ϕv and ϕu are positive values, the dynamic pressure generation mechanism 11 forms a curved line convexed toward the leakage side of the sliding surface S. In order to define the shape of the dynamic pressure generation mechanism 11 according to the present invention, ϕv and ϕu are set within the ranges of 0≤ϕ≤2 and 0≤ϕu≤1. Moreover, when ϕv and ϕu are negative values, the dynamic pressure generation mechanism 11 forms a curved line concaved toward the leakage side of the sliding surface S. In FIG. 3A, by means of Formula (1) to Formula (3), the shape of the dynamic pressure generation mechanism 11 is defined using the vector when ϕ0 is zero. That is, the shape of the dynamic pressure generation mechanism 11 is set in such a manner that the curvature is small at the inlet opening 11a of the dynamic pressure generation mechanism 11 (the curvature radius is large) and the curvature is increased according to the flow path length from the inlet opening 11a of the dynamic pressure generation mechanism 11 (the curvature radius is small).


As shown in FIG. 3A, when the sliding member (the rotating-side sealing ring 3) on the opposite side rotates in a predetermined direction (a clockwise direction in FIG. 3A), the fluid, due to its viscosity, moves by following the moving direction of the rotating-side sealing ring 3 and flows into the dynamic pressure generation mechanism 11. For example, as shown in FIG. 3A, when the flow of the fluid from the stationary-side sealing ring 5 is observed, a velocity Vi of the fluid flowing into the dynamic pressure generation mechanism 11 is obtained by combining a circumferential velocity u according to the rotational velocity of the rotating-side sealing ring 3 with a radial velocity Vp by a pumping action of the dynamic pressure generation mechanism 11.


In FIG. 3A, the effect of the circumferential velocity u is large and the radial velocity is low, and therefore an angle α at which the fluid flows into the dynamic pressure generation mechanism 11 is very small. On the other hand, the initial curvature at the inlet opening 11a of the dynamic pressure generation mechanism 11 is set to zero, and therefore the angle between the inner circumferential edge 5b of the sliding surface S and a surface on the convex side of the dynamic pressure generation mechanism 11, that is, an inlet angle of the inlet opening 11a of the dynamic pressure generation mechanism 11 also is zero. Thereby, the difference between the angle α at which the fluid flows into the dynamic pressure generation mechanism 11 and the angle of the inlet opening 11a of the dynamic pressure generation mechanism 11 is very small, and therefore it is possible to reduce a loss in inflow when the fluid flows into the inlet opening 11a of the dynamic pressure generation mechanism 11. Moreover, the circumferential velocity u of the fluid within the dynamic pressure generation mechanism 11 is efficiently converted into the radial velocity Vp toward the flow path downstream side, and therefore it is possible to generate a pumping action for sucking the fluid into the sliding surface S from the leakage side even at low-speed rotation.


On the other hand, FIG. 3B shows a state that the fluid flows into a conventional spiral-shaped dynamic pressure generation mechanism 12. In a case of the spiral-shaped dynamic pressure generation 12, the difference between the angle α at which the fluid flows into the dynamic pressure generation mechanism 12 and an angle θ2 of the inlet opening 11a of the dynamic pressure generation mechanism 12 is very large, and therefore a loss in inflow when the fluid flows into the dynamic pressure generation mechanism 12 is very large. Therefore, a pumping action for sucking the fluid into the sliding surface S from the leakage side is not generated till at high-speed rotation.


Thus, the sliding member having the dynamic pressure generation mechanism 11 according to the present invention can exhibit a pumping action even at low-speed rotation (around 10 rpm) and suck the fluid from the leakage side when the rotating-side sealing ring 3 begins to rotate, and can push back, to the sealed fluid side, the sealed fluid that is likely to leak to the low-pressure fluid side, and therefore it is possible to improve sealing performance. Specifically, the angle θ1 between the inner circumferential edge 5b of the sliding surface S and the inlet opening 11a of the dynamic pressure generation mechanism 11 is 0°≤θ1≤45°, preferably 0°≤θ1≤10°, and therefore it is possible to extremely reduce a loss in inflow when the fluid flows into the dynamic pressure generation mechanism 11. Here, θ1 corresponds to ϕ0 in Formula 2.


Moreover, since the dynamic pressure generation mechanism 11 exhibits a pumping action even at low-speed, even when dynamic pressure by the dynamic pressure generation mechanism 11 is not sufficiently generated at low-speed, positive pressure can be generated by a wedge effect at the toe part 11b of the dynamic pressure generation mechanism 11, and therefore it is possible to maintain the sliding surface S at a fluid lubrication state even at low-speed rotation.


As described above, the sliding member according to the present invention exhibits the following effects.

    • 1. Since the shape of the dynamic pressure generation mechanism 11 is set such that the curvature thereof is increased in proportion to the flow path length of the dynamic pressure generation mechanism 11 from the inlet opening 11a, the difference between the angle α at which the fluid flows into the dynamic pressure generation mechanism 11 and the inlet angle of the inlet opening 11a of the dynamic pressure generation mechanism 11 can be set extremely small, and therefore it is possible to extremely reduce a loss in inflow when the fluid flows into the dynamic pressure generation mechanism 11. Moreover, the circumferential velocity u of the fluid within the dynamic pressure generation mechanism 11 is efficiently converted into the radial velocity Vp toward the flow path downstream side, and therefore it is possible to generate a pumping action for sucking the fluid into the sliding surface S from the leakage side even at low-speed rotation.
    • 2. The dynamic pressure generation mechanism 11 is set to have the shape in Formulas (1) to (3), thereby capable of easily designing the dynamic pressure generation mechanism 11 with low loss.
    • 3. Since the dynamic pressure generation mechanism 11 exhibits a pumping action even at low-speed, even when dynamic pressure by the dynamic pressure generation mechanism 11 is not sufficiently generated at low-speed, positive pressure can be generated by a wedge effect at the toe part 11b of the dynamic pressure generation mechanism 11, and therefore it is possible to maintain the sliding surface S at a fluid lubrication state even at low-speed rotation.


Hereinbefore, although the embodiment of the present invention has been described by the drawings, its specific configuration is not limited to the embodiment, and any changes and additions made without departing from the scope of the present invention are included in the present invention.


In the above embodiment, the dynamic pressure generation mechanism 11 is made up of the groove portion, but the present invention is not limited thereto. For example, the dynamic pressure generation mechanism may be made up of a pseudo flow path in which minute dimples are arranged adjacent to each other.


Although the outer circumferential side is described as the sealed fluid side and the inner circumferential side is described as the leakage side, the present invention is not limited thereto, and is also applicable to a case where the inner circumferential side is the sealed fluid side and the outer circumferential side is the leakage side. For example, the inlet opening 11a of the dynamic pressure generation mechanism 11 is assumed as the outer circumferential edge of the sliding surface, and ϕv and ϕu are set within the ranges of −2≤ϕv≤0 and −1≤ϕu≤0, thereby capable of defining the dynamic pressure generation mechanism 11.


Moreover, the dynamic pressure generation mechanism 11 is provided on the sliding surface S of the stationary-side sealing ring 5, but may be provided on the sliding surface S of the rotating-side sealing ring 3.


REFERENCE SIGNS LIST






    • 1 mechanical seal


    • 2 sleeve


    • 3 rotating-side sealing ring


    • 5 stationary-side sealing ring


    • 6 coiled wave spring


    • 7 bellows


    • 8 packing


    • 9 casing


    • 10 rotating shaft


    • 11 dynamic pressure generation mechanism


    • 11
      a inlet opening


    • 11
      b toe part


    • 12 dynamic pressure generation mechanism

    • S sliding surface




Claims
  • 1. A pair of sliding members that slide relative to each other on sliding surfaces, characterized in that: at least one of the sliding surfaces includes a dynamic pressure generation mechanism, and the curvature of the dynamic pressure generation mechanism increases according to the flow path length from an inlet opening of the dynamic pressure generation mechanism.
  • 2. The sliding member according to claim 1, characterized in that the angle between a circumferential edge of the sliding surface and the inlet opening of the dynamic pressure generation mechanism is set to from 0° to 45°.
  • 3. The sliding member according to claim 2, characterized in that the shape of the dynamic pressure generation mechanism is represented by the following formulas: P=P0+h⁢∫0Sej⁢ϕ⁢dS(Formula⁢1)ϕ=ϕ0+ϕvS+ϕuS2  (Formula 2)
  • 4. The sliding member according to claim 2, characterized in that the dynamic pressure generation mechanism is such that one end communicates with a leakage side and the other end is surrounded by a land portion.
  • 5. The sliding member according to claim 2, characterized in that the dynamic pressure generation mechanism is such that one end is surrounded by a land portion and the other end communicates with a sealed fluid side.
  • 6. The sliding member according to claim 2, characterized in that the dynamic pressure generation mechanism is surrounded by a land portion.
  • 7. The sliding member according to claim 2, characterized in that the dynamic pressure generation mechanism is made of a groove portion.
  • 8. The sliding member according to claim 2, characterized in that the dynamic pressure generation mechanism is a pseudo flow path made of a dimple group consisting of a plurality of dimples.
  • 9. The sliding member according to claim 1, characterized in that the shape of the dynamic pressure generation mechanism is represented by the following formulas: P=P0+h⁢∫0Sej⁢ϕ⁢dS(Formula⁢1)ϕ=ϕ0+ϕvS+ϕuS2  (Formula 2)
  • 10. The sliding member according to claim 9, characterized in that the dynamic pressure generation mechanism is such that one end communicates with a leakage side and the other end is surrounded by a land portion.
  • 11. The sliding member according to claim 9, characterized in that the dynamic pressure generation mechanism is such that one end is surrounded by a land portion and the other end communicates with a sealed fluid side.
  • 12. The sliding member according to claim 9, characterized in that the dynamic pressure generation mechanism is surrounded by a land portion.
  • 13. The sliding member according to claim 9, characterized in that the dynamic pressure generation mechanism is made of a groove portion.
  • 14. The sliding member according to claim 9, characterized in that the dynamic pressure generation mechanism is a pseudo flow path made of a dimple group consisting of a plurality of dimples.
  • 15. The sliding member according to claim 1, characterized in that the dynamic pressure generation mechanism is such that one end communicates with a leakage side and the other end is surrounded by a land portion.
  • 16. The sliding member according to claim 15, characterized in that the dynamic pressure generation mechanism is made of a groove portion.
  • 17. The sliding member according to claim 1, characterized in that the dynamic pressure generation mechanism is such that one end is surrounded by a land portion and the other end communicates with a sealed fluid side.
  • 18. The sliding member according to claim 1, characterized in that the dynamic pressure generation mechanism is surrounded by a land portion.
  • 19. The sliding member according to claim 1, characterized in that the dynamic pressure generation mechanism is made of a groove portion.
  • 20. The sliding member according to claim 1, characterized in that the dynamic pressure generation mechanism is a pseudo flow path made of a dimple group consisting of a plurality of dimples.
Priority Claims (1)
Number Date Country Kind
2018-157873 Aug 2018 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2019/032723 8/22/2019 WO
Publishing Document Publishing Date Country Kind
WO2020/040234 2/27/2020 WO A
US Referenced Citations (114)
Number Name Date Kind
3085808 Williams Apr 1963 A
3232680 Clark Feb 1966 A
3410565 Williams Nov 1968 A
3466052 Ludwig Sep 1969 A
3499653 Gardner Mar 1970 A
3527465 Guinard Sep 1970 A
3656227 Weinand Apr 1972 A
3804424 Gardner Apr 1974 A
4406466 Geary, Jr. Sep 1983 A
4486026 Furumura et al. Dec 1984 A
5092612 Victor Mar 1992 A
5201531 Lai Apr 1993 A
5222743 Goldswain Jun 1993 A
5385409 Ide Jan 1995 A
5441283 Pecht et al. Aug 1995 A
5447316 Matsui Sep 1995 A
5492341 Pecht Feb 1996 A
5496047 Goldswain Mar 1996 A
5498007 Kulkarni Mar 1996 A
5501470 Fuse Mar 1996 A
5529318 Fuse Jun 1996 A
5556111 Sedy Sep 1996 A
5605339 Pecht Feb 1997 A
5664787 Fuse et al. Sep 1997 A
5702110 Sedy Dec 1997 A
5895051 Bowers Apr 1999 A
6142478 Pecht Nov 2000 A
6189896 Dickey et al. Feb 2001 B1
6446976 Key Sep 2002 B1
6575470 Gacek Jun 2003 B1
6817766 Gomyo Nov 2004 B2
7510330 Obara Mar 2009 B2
7568839 Gotoh et al. Aug 2009 B2
7758051 Roberts-Haritonov et al. Jul 2010 B2
9062775 Short et al. Jun 2015 B2
9353865 Lattin May 2016 B2
9353867 Itadani May 2016 B2
9371912 Hosoe et al. Jun 2016 B2
9587745 Itadani et al. Mar 2017 B2
9677670 Itadani et al. Jun 2017 B2
9829109 Itadani et al. Nov 2017 B2
9845886 Itadani Dec 2017 B2
9951873 Inoue et al. Apr 2018 B2
9982784 Osada et al. May 2018 B2
10054230 Katori Aug 2018 B2
10072759 Inoue et al. Sep 2018 B2
10113648 Inoue et al. Oct 2018 B2
10190689 Yoshida et al. Jan 2019 B2
10337620 Tokunaga et al. Jul 2019 B2
10352450 Yamanaka et al. Jul 2019 B2
10408349 Miyazaki Sep 2019 B2
10473220 Tokunaga et al. Nov 2019 B2
10487944 Itadani Nov 2019 B2
10487948 Inoue et al. Nov 2019 B2
10495228 Itadani et al. Dec 2019 B2
10648569 Itadani May 2020 B2
10655736 Itadani May 2020 B2
10704417 Tokunaga et al. Jul 2020 B2
10781924 Inoue et al. Sep 2020 B2
10883603 Inoue et al. Jan 2021 B2
10883604 Inoue et al. Jan 2021 B2
11009072 Kimura et al. May 2021 B2
11009130 Itadani May 2021 B2
11125335 Kimura et al. Sep 2021 B2
11221071 Sasaki Jan 2022 B2
11525512 Kimura Dec 2022 B2
11530749 Kimura Dec 2022 B2
11603934 Imura Mar 2023 B2
11644100 Kimura May 2023 B2
20020093141 Wang Jul 2002 A1
20030178781 Tejima Sep 2003 A1
20040080112 Tejima Apr 2004 A1
20050135714 Rahman Jun 2005 A1
20050141789 Kita et al. Jun 2005 A1
20050212217 Tejima Sep 2005 A1
20070296156 Yanagisawa et al. Dec 2007 A1
20080100001 Flaherty May 2008 A1
20080272552 Zheng Nov 2008 A1
20100066027 Vasagar Mar 2010 A1
20110101616 Teshima May 2011 A1
20120018957 Watanabe Jan 2012 A1
20130189294 Koelle et al. Jul 2013 A1
20130209011 Tokunaga Aug 2013 A1
20140203517 Ferris Jul 2014 A1
20150115537 Tokunaga Apr 2015 A1
20150123350 Itadani May 2015 A1
20150184752 Itadani Jul 2015 A1
20150226334 Itadani Aug 2015 A1
20150240950 Takahashi Aug 2015 A1
20150260292 Inoue et al. Sep 2015 A1
20150377297 Tokunaga et al. Dec 2015 A1
20150377360 Itadani Dec 2015 A1
20160033045 Itadani et al. Feb 2016 A1
20160097457 Sun et al. Apr 2016 A1
20160252182 Itadani et al. Sep 2016 A1
20170009889 Seki Jan 2017 A1
20170198814 Colombo et al. Jul 2017 A1
20170234431 Katori et al. Aug 2017 A1
20180051809 Yoshida Feb 2018 A1
20180058584 Miyazaki Mar 2018 A1
20180073394 Tokunaga et al. Mar 2018 A1
20180128377 Tokunaga et al. May 2018 A1
20180128378 Tokunaga et al. May 2018 A1
20190178386 Arai Jun 2019 A1
20190301522 Negishi et al. Oct 2019 A1
20190376558 Kimura Dec 2019 A1
20210080006 Sasaki Mar 2021 A1
20210116029 Kimura Apr 2021 A1
20210116030 Kimura Apr 2021 A1
20210116032 Kimura Apr 2021 A1
20210164571 Kimura Jun 2021 A1
20220010835 Inoue Jan 2022 A1
20220099191 Suzuki Mar 2022 A1
20220275828 Inoue Sep 2022 A1
Foreign Referenced Citations (104)
Number Date Country
1364987 Aug 2002 CN
2534429 Feb 2003 CN
1401924 Mar 2003 CN
101749431 Jun 2010 CN
101776152 Jul 2010 CN
201582390 Sep 2010 CN
103267132 Aug 2013 CN
103732958 Apr 2014 CN
103791097 May 2014 CN
104019237 Sep 2014 CN
104165229 Nov 2014 CN
105683632 Jun 2016 CN
106439037 Feb 2017 CN
206017723 Mar 2017 CN
107166036 Sep 2017 CN
107532724 Jan 2018 CN
107676484 Feb 2018 CN
108506494 Sep 2018 CN
36 19 489 Dec 1987 DE
4407453 Sep 1995 DE
0637706 Aug 1993 EP
0896163 Feb 1999 EP
2520835 Nov 2012 EP
2626604 Aug 2013 EP
2977655 Jan 2016 EP
3091258 Nov 2016 EP
3299686 Mar 2018 EP
3514414 Jul 2019 EP
3922872 Dec 2021 EP
3926187 Dec 2021 EP
3926188 Dec 2021 EP
3943765 Jan 2022 EP
1509482 May 1978 GB
36-6305 May 1961 JP
S49-33614 Sep 1974 JP
S54-77305 Jun 1979 JP
S55-177549 Dec 1980 JP
S57-146955 Sep 1982 JP
58-109771 Jun 1983 JP
58-137667 Aug 1983 JP
S59-58252 Apr 1984 JP
S60-107461 Jul 1985 JP
36182177 May 1986 JP
S62-37572 Feb 1987 JP
S63-033027 Mar 1988 JP
S63-190975 Aug 1988 JP
H01133572 Sep 1989 JP
2-236067 Sep 1990 JP
H0314371 Feb 1991 JP
3-35372 Apr 1991 JP
3-41268 Apr 1991 JP
H0341267 Apr 1991 JP
H04-73 Jan 1992 JP
H04-145267 May 1992 JP
H04-96671 Aug 1992 JP
H05-90048 Dec 1993 JP
H05-322050 Dec 1993 JP
H07-55016 Mar 1995 JP
H08-89489 Apr 1996 JP
H09-503276 Mar 1997 JP
H09-329247 Dec 1997 JP
H10-38093 Feb 1998 JP
H10-281299 Oct 1998 JP
2000-179543 Jun 2000 JP
2001-295833 Oct 2001 JP
2001-317638 Nov 2001 JP
2003-161322 Jun 2003 JP
2003-343741 Dec 2003 JP
2004-003578 Jan 2004 JP
2005-188651 Jul 2005 JP
2005-58051 Dec 2005 JP
2006-9828 Jan 2006 JP
2006-022834 Jan 2006 JP
2006-77899 Mar 2006 JP
2008-144864 Jun 2008 JP
2009-250378 Oct 2009 JP
2010-133496 Jun 2010 JP
2010-216587 Sep 2010 JP
2011185292 Sep 2011 JP
2012-2295 Jan 2012 JP
5271858 May 2013 JP
2016-80090 May 2016 JP
2017-141961 Aug 2017 JP
6444492 Dec 2018 JP
2019-15401 Jan 2019 JP
WO 9506832 Mar 1995 WO
WO 2012046749 Apr 2012 WO
WO 2014024742 Feb 2014 WO
WO 2014050920 Apr 2014 WO
WO 2014103630 Jul 2014 WO
WO 2014112455 Jul 2014 WO
WO2014103631 Jul 2014 WO
WO 2014148316 Sep 2014 WO
WO 2014174725 Oct 2014 WO
2016009408 Jan 2016 WO
WO 2016035860 Mar 2016 WO
WO 2016167262 Oct 2016 WO
WO 2016186019 Nov 2016 WO
WO2016203878 Dec 2016 WO
WO 2017002774 Jan 2017 WO
WO 2018034197 Feb 2018 WO
WO 2018105505 Jun 2018 WO
WO2018139231 Aug 2018 WO
WO2018139232 Aug 2018 WO
Non-Patent Literature Citations (103)
Entry
Chinese Office Action issued in application No. 201980087670.2 (with translation), dated Jul. 1, 2022 (17 pgs).
Chinese Office Action issued in application No. 201980043720.7 (with translation), dated Jun. 6, 2022 (12 pgs).
Chinese Office Action issued in application No. 202080014381.2 (with translation), dated Aug. 11, 2022 (15 pgs).
Chinese Office Action issued in application No. 202080012994.2 (with translation), dated Aug. 29, 2022 (14 pgs).
European Official Action issued in related European Patent Application Serial No. 19869466.3, dated May 19, 2022, 9 pages.
European Official Action issued in related European Patent Application Serial No. 19876680.0, dated Jun. 3, 2022, 8 pages.
European Official Action issued in related European Patent Application Serial No. 19888532.9, dated Jul. 8, 2022, 7 pages.
European Official Action issued in related European Patent Application Serial No. 19899646.4, dated Aug. 12, 2022, 9 pages.
Korean Office Action issued in application No. 10-2020-7037305 (with translation), dated Jun. 24, 2022 (17 pgs).
Korean Office Action issued in application No. 10-2021-7002193 (with translation), dated Jul. 18, 2022 (13 pgs).
Office Action issued in U.S. Appl. No. 17/257,260, dated Jul. 6, 2022 (12 pgs).
Definition of groove by Merriam Webster.
Chinese Office Action issued in application No. 201380070532.6 (with translation), dated Jan. 28, 2016 (13 pgs).
Chinese Office Action issued in application No. 201380070532.6 (with translation), dated Sep. 20, 2016 (12 pgs).
Second Office Action issued by the State Intellectual Property Office of China, dated Aug. 29, 2016, for Chinese counterpart application No. 201480002574.0, 8 pages.
First Notification of Reason for Refusal issued by the State Intellectual Property Office of China, dated Dec. 24, 2015, with a search report for Chinese counterpart application No. 201480002574.0, 11 pages.
Office Action issued in U.S. Appl. No. 14/431,733, dated Apr. 29, 2016 (22 pgs).
Office Action issued in U.S. Appl. No. 14/431,733, dated Aug. 18, 2017 (13 pgs).
Office Action issued in U.S. Appl. No. 14/431,733, dated Mar. 31, 2017 (14 pgs).
Office Action issued in U.S. Appl. No. 14/431,733, dated Oct. 6, 2016 (12 pgs).
Office Action issued in U.S. Appl. No. 15/419,989, dated Jan. 26, 2018 (20 pgs).
Office Action issued in U.S. Appl. No. 15/419,970, dated May 11, 2018 (17 pgs).
Office Action issued in U.S. Appl. No. 15/419,970, dated Jan. 23, 2018 (21 pgs).
Office Action issued in U.S. Appl. No. 15/842,862, dated Jun. 5, 2019 (37 pgs).
Office Action issued in U.S. Appl. No. 15/842,855, dated Mar. 12, 2020 (11 pgs).
Office Action issued in U.S. Appl. No. 15/842,855, dated Jun. 29, 2020, 16 pages.
Office Action issued in U.S. Appl. No. 15/842,858, dated Mar. 31, 2020 (10 pgs).
Office Action issued in U.S. Appl. No. 15/842,859, dated Apr. 8, 2020 (12 pgs).
Notice of Allowance issued in U.S. Appl. No. 15/419,970, dated Aug. 9, 2018 (16 pgs).
Notice of Allowance issued in U.S. Appl. No. 14/431,733, dated Feb. 23, 2018 (22 pgs).
Notice of Allowance issued in U.S. Appl. No. 15/419,989, dated Jul. 23, 2018 (11 pgs).
Notice of Allowance issued in U.S. Appl. No. 15/842,862, dated Sep. 30, 2019, 15 pages.
Japanese Office Action (w/translation) issued in application 2018-159877, dated Jun. 13, 2019 (7 pgs).
International Search Report issued in application No. PCT/JP2013/084029, dated Mar. 25, 2014 (4 pgs).
International Preliminary Report on Patentability issued in application No. PCT/JP2013/084029, dated Nov. 5, 2015 (8 pgs).
International Search Report and Written Opinion issued in PCT/JP2014/050402, dated Feb. 10, 2014, with English translation, 12 pages.
International Preliminary Report on Patentability issued in PCT/JP2014/050402, dated Jul. 21, 2015, 4 pages.
International Search Report and Written Opinion issued in PCT/JP2019/045728, dated Dec. 17, 2019, with English translation, 13 pages.
International Preliminary Report on Patentability issued in PCT/JP2019/045728, dated May 25, 2021, 7 pages.
International Search Report and Written Opinion issued in PCT/JP2019/047890, dated Feb. 10, 2020, with English translation, 13 pages.
International Preliminary Report on Patentability issued in PCT/JP2019/047890, dated Aug. 10, 2021, 7 pages.
International Search Report and Written Opinion issued in PCT/JP2019/049870, dated Mar. 10, 2020, with English translation, 13 pages.
International Preliminary Report on Patentability issued in PCT/JP2019/049870, dated Jun. 16, 2021, 7 pages.
International Search Report and Written Opinion issued in PCT/JP2020/005260, dated Apr. 7, 2020, with English translation, 16 pages.
International Preliminary Report on Patentability issued in PCT/JP2020/005260, dated Aug. 10, 2021, 9 pages.
International Search Report and Written Opinion issued in PCT/JP2020/006421, dated Apr. 21, 2020, with English translation, 13 pages.
International Preliminary Report on Patentability issued in PCT/JP2020/006421, dated Aug. 10, 2021, 6 pages.
International Search Report and Written Opinion issued in PCT/JP2020/017170, dated Jun. 2, 2020, with English translation, 13 pages.
International Preliminary Report on Patentability issued in PCT/JP2020/027005, dated Feb. 1, 2022, 4 pages.
International Search Report and Written Opinion issued in PCT/JP2020/027005, dated Sep. 1, 2020, with English translation, 11 pages.
International Preliminary Report on Patentability issued in PCT/JP2019/032723, dated Mar. 2, 2021, 6 pages.
International Search Report and Written Opinion issued in PCT/JP2019/032723, dated Nov. 5, 2019, with English translation, 17 pages.
International Preliminary Report on Patentability issued in PCT/JP2019/029771, dated Feb. 2, 2021, 7 pages.
International Search Report and Written Opinion issued in PCT/JP2019/029771, dated Sep. 17, 2019, with English translation, 20 pages.
International Preliminary Report on Patentability issued in PCT/JP2019/040209, dated Apr. 27, 2021, 6 pages.
International Search Report and Written Opinion issued in PCT/JP2019/040209, dated Dec. 24, 2019, with English translation, 17 pages.
International Preliminary Report on Patentability issued in PCT/JP2019/038155, dated Mar. 23, 2021, 6 pages.
International Search Report and Written Opinion issued in PCT/JP2019/038155, dated Nov. 19, 2019, with English translation, 18 pages.
Chinese Office Action issued in application No. 201980076998.4 (with translation), dated Jan. 18, 2023, 12 pages.
Chinese Office Action issued in application No. 201980059152.X (with translation), dated Oct. 10, 2022, 14 pages.
Chinese Office Action issued in application No. 202080012994.2(with translation), dated Feb. 2, 2023, 13 pages.
Chinese Office Action issued in application No. 202080012994.2(with translation), dated Apr. 24, 2023, 12 pages.
Chinese Office Action issued in application No. 201980082245.4 (with translation), dated Feb. 16, 2023, 23 pages.
European Official Action issued in application No. 19869466.3, dated Mar. 16, 2023, 7 pages.
European Official Action issued in application No. 22212136.0, dated Mar. 15, 2023, 8 pages.
European Official Action issued in application No. 19850900.2, dated Mar. 28, 2023, 4 pages.
European Official Action issued in application No. 23155551.7, dated Feb. 28, 2023, 7 pages.
European Official Action issued in application No. 19888532.9, dated Mar. 7, 2023, 3 pages.
European Official Action issued in application No. 23158438.4, dated May 15, 2023, 11 pages.
Japanese Decision of Refusal issued in application No. 2021-502065, dated May 23, 2023, 8 pages.
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7002193, dated Jan. 11, 2023, 11 pages.
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7022185, dated Apr. 6, 2023, 12 pages.
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7016898, dated Feb. 16, 2023, 13 pages.
Official Action issued in related U.S. Appl. No. 17/413,466, dated Apr. 12, 2023, 11 pages.
Official Action issued in related U.S. Appl. No. 17/296,466, dated Apr. 12, 2023, 9 pages.
Official Action issued in related U.S. Appl. No. 17/428,909, dated Apr. 21, 2023, 8 pages.
Official Action issued in related U.S. Appl. No. 17/628,158, dated May 15, 2023, 14 pages.
European Official Action issued in related European Patent Application Serial No. 19850900.2, dated Mar. 31, 2022, 11 pages.
European Official Action issued in related European Patent Application Serial No. 19843273.4, dated Mar. 24, 2022, 9 pages.
Chinese Office Action issued in application No. 201980047011.6 (with translation), dated Jul. 7, 2022 (11 pgs).
International Search Report (ISR) dated Nov. 5, 2019, issued for International application No. PCT/JP2019/032723. (2 pages).
Chinese Office Action issued in application No. 201980059152.X (with translation), dated May 8, 2023, 11 pages.
European Search Report issued in application No. 20847261.3, dated Jul. 17, 2023, 8 pages.
Korean Official Action issued in Korean Patent Application Serial No. 10-2021-7028879, dated Jun. 28, 2023, 10 pages.
Official Action issued in related U.S. Appl. No. 17/428,909, dated Jul. 25, 2023, 8 pages.
Notice of Allowance issued in related U.S. Appl. No. 17/296,466, dated Jul. 24, 2023, 9 pages.
U.S. Appl. No. 17/257,260, filed Dec. 30, 2020, Okada.
U.S. Appl. No. 17/275,505, filed Mar. 11, 2021, Tokunaga et al.
U.S. Appl. No. 17/277,282, filed Mar. 17, 2021, Tokunaga.
U.S. Appl. No. 17/296,466, filed May 24, 2021, Inoue et al.
U.S. Appl. No. 17/413,466, filed Jun. 11, 2021, Imura et al.
U.S. Appl. No. 17/420,660, filed Jul. 2, 2021, Suzuki et al.
U.S. Appl. No. 17/428,909, filed Aug. 5, 2021, Tokunaga et al.
U.S. Appl. No. 17/429,896, filed Aug. 10, 2021, Suzuki et al.
U.S. Appl. No. 17/628,158, filed Jan. 18, 2022, Inoue et al.
Chinese Office Action issued in application No. 201980065303.2 (with translation), dated Oct. 10, 2022 (13 pgs).
European Official Action issued in related European Patent Application Serial No. 19914452.8, dated Oct. 5, 2022, 10 pages.
European Official Action issued in related European Patent Application Serial No. 20756664.7, dated Oct. 14, 2022, 8 pages.
European Official Action issued in related European Patent Application Serial No. 20759684.2, dated Oct. 17, 2022, 7 pages.
Korean Office Action issued in application No. 10-2021-7019130 (with translation), dated Oct. 22, 2022 (13 pgs).
Korean Office Action issued in application No. 10-2021-7007194 (with translation), dated Nov. 7, 2022 (14 pgs).
Korean Office Action issued in application No. 10-2021-7009776 (with translation), dated Dec. 12, 2022 (19 pgs).
Notice of Allowance issued in U.S. Appl. No. 17/257,260, dated Nov. 23, 2022, 9 pages.
Related Publications (1)
Number Date Country
20210301865 A1 Sep 2021 US