1. Field of the Invention
The invention generally relates to a sliding panel for a sliding window assembly and, more specifically, to a sliding panel for a sliding window assembly for a vehicle.
2. Description of the Related Art
Sliding window assemblies for vehicles are known in the art. Generally, a sliding window assembly include a first and a second fixed panel configured to be coupled to the vehicle. The first and the second fixed panels are spaced from each other and define an opening therebetween. An upper track and a lower track spaced from the upper track are each attached to the fixed panels. A sliding panel is slideable along the tracks between an open and closed position to modify a size of the opening.
Generally the sliding panel is moved between the open and the closed positions either manually, i.e., by a force applied by a person, or automatically by, for example, a cable drive system including a cable and a motor. When the sliding panel is moved manually, the sliding window assembly is referred to as a manual sliding window assembly. Alternatively, when the sliding panel is moved by the cable and the motor, the sliding window assembly is referred to as a power sliding window assembly. Typically, in the manual sliding window assembly, the sliding panel is disposed directly within the track. In the power sliding window assembly, the sliding panel is disposed within a carrier sleeve that is moveable within the lower track. The cable is coupled to the motor and the carrier sleeve for moving the carrier sleeve which moves the sliding panel between the open and closed positions as the motor is operated.
The required addition of the carrier sleeve in the power sliding window assembly requires the lower track to be wider as compared to if the lower track was used in the manual sliding window assembly. Requiring different lower tracks in the power and manual sliding window assemblies adds considerable cost, labor, and equipment to produce the sliding window assemblies.
It is also know in the art for the sliding window assembly to include a carrier bar in place of the carrier sleeve. Typically, the carrier bar is disposed on the sliding panel for coupling with the cable to move the sliding panel between the open and closed positions. The carrier bar is disposed on the sliding panel by an adhesive that bonds the carrier bar to the sliding panel. Over time, the adhesive can degrade resulting in separation between the carrier bar and the sliding panel and resulting in a failure of the sliding window assembly.
Generally, a diecast cylinder is coupled to each end of the cable, and a portion of the carrier bar defines a pair of pockets for receiving the diecast cylinder to couple the cable to the carrier bar. The complexity of the mechanical interface between the diecast cylinders and the pockets causes the assembly of the sliding window assembly to be labor intensive. Additionally, the portion of the carrier bar defining the pockets can break resulting in a deformation of the pocket and failure of the power sliding window assembly. Furthermore, over time, the diecast cylinder can break off of the cable resulting in a failure of the power sliding window assembly.
The present invention includes a sliding panel for use in a sliding window assembly for a vehicle. The sliding panel has a bottom edge in sliding engagement with the sliding window assembly. The sliding panel includes at least one bracket coupled to the sliding panel. The present invention also includes a cable having a first end and a second end spaced from the first end with a body portion disposed therebetween. At least one of the first end of the cable, the second end of the cable, and the body portion of the cable is molded within the bracket thereby coupling the cable to the bracket. The coupling of the cable to the bracket in this fashion, i.e., by molding, enables transfer of a force from the cable to the bracket to slide the sliding panel within the sliding window assembly once the sliding panel is installed in the sliding window assembly. Molding the cable into the bracket also increases a pull strength between the cable and the bracket as compared to a non-molded connection as with the diecast cylinder and pockets of the carrier bar described above. Furthermore, molding the cable within the bracket increases the durability of the connection between the cable and the bracket thereby extending the life of the sliding window assembly.
The present invention further includes a method of manufacturing the sliding panel. The method includes that step of manipulating a mold assembly into an open position to access a cavity defined by the mold assembly and the step of positioning the cable into the cavity. The method also includes the steps of manipulating the mold assembly into a closed position to secure the cable within the cavity, and injecting a molding material into the cavity to mold the bracket about the cable with at least one of the first end of the cable, the second end of the cable, and the body portion of the cable is molded within the bracket. The method further includes the step of coupling the bracket to the sliding panel to allow the force to be transferred from the cable to the sliding panel to slide the sliding panel within the sliding window assembly. Molding the cable into the bracket during the formation of the bracket decreases an amount of time required to assembly the sliding window assembly because the cable is already coupled to the sliding panel which eliminates an added step of coupling the cable to the sliding window assembly.
Advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, a sliding window assembly 20 for use in a vehicle 22 is generally shown. Referring to
Generally, the sliding window assembly 20 includes at least one fixed panel 24, 26 configured for coupling with the vehicle 22. As shown in
The first and second fixed panels 24, 26 have an interior surface 30 for facing an interior of the vehicle 22 when the sliding window assembly 20 is coupled to the vehicle 22. The first and second fixed panels 24, 26 also have an exterior surface 32 for facing an exterior of the vehicle 22 when the sliding window assembly 20 is coupled to the vehicle 22.
A sliding panel 64 is moveable relative to the first and second fixed panels 24, 26 for covering the opening 28 in a closed position and for uncovering the opening 28 in an open position. The sliding panel 64 is covering the opening 28 in a closed position in
The sliding panel 64 presents an exterior surface 50 and an opposing interior surface 52 with the exterior surface 50 of the sliding panel 64 facing the exterior of the vehicle 22 and the interior surface 52 of the sliding panel 64 facing the interior of the vehicle 22 when the sliding window assembly 20 is coupled to the vehicle 22. Like the first and second fixed panels 24, 26, the sliding panel 64 is typically formed of glass, but can be formed of any suitable material such as plastic and metal.
Generally, the sliding window assembly 20 includes at least one track 36, 38, commonly referred to throughout the industry as a run channel. The track 36, 38 is coupled to at least one, and typically both, of the first and second fixed panels 24, 26. As shown in
Referring to
The rail 42 provides structural reinforcement to the elongated member 40. The rail 42 has a first end 46 and a second end 48 spaced from the first end 46. The rail 42 is typically U-shaped and has an interior surface 50 and an exterior surface 54. Typically, the rail 42 comprise aluminum however it is to be appreciated that the rail 42 may comprise any suitable material without deviating from the scope of the subject invention.
The first and second tracks 36, 38 are typically coupled to the first and second fixed panels 24, 26 by adhesive surface bonding. Although not required, the adhesive surface bonding can be a process referred to in the industry as glass encapsulation. The glass encapsulation can be further defined as single-sided encapsulation, two-sided encapsulation, or three-sided encapsulation. For example, with single-sided encapsulation, the first and second tracks 36, 38 are coupled to the interior surface 30 of the first and second fixed panels 24, 26 leaving the exterior surface 32 of the first and second fixed panels 24, 26 free of adhesive surface bonding. It should be appreciated that the adhesive surface bonding can be any type of adhesive surface bonding other than glass encapsulation without departing from the nature of the present invention.
Generally, the glass encapsulation results in an encapsulant that can be used to couple the first and second tracks 36, 38 to the first and second fixed panels 24, 26. When formed by glass encapsulation, the encapsulant typically comprises polyvinyl chloride (PVC). However, it should be appreciated that the encapsulant may be formed from any type of material suitable for glass encapsulation. When the glass encapsulation is employed, the first and second tracks 36, 38 are formed, at least partially, from the encapsulant. Specifically, with respect to glass encapsulation, the elongated member 40 is formed of the encapsulant and is coupled to the first and second fixed panels 24, 26 by glass encapsulation. Furthermore, the rail 42 may also be coupled to the elongated member 40 during the glass encapsulation such that the encapsulant at least partially encompasses the exterior surface 54 of the rail 42. In such an embodiment, the first and second tracks 36, 38 are each integral with the first and second fixed panels 24, 26. Specifically, the elongated member 40 of the first track 36 is integral with the rail 42 of the first track 36 and with the first and second fixed panels 24, 26. Likewise, the elongated member 40 of the second track 38 is integral with the rail 42 of the second track 38 and with the first and second fixed panels 24, 26. In other words, the first and second tracks 36, 38 and the first and second fixed panels 24, 26 form a single continuous unit. It should be appreciated that even though the elongated member 40 and the rail 42 are integral, the elongated member 40 and the rail 42 are shown in an exploded view in
As shown in
Referring to
The sliding panel 64 typically slides horizontally along the first and second tracks 36, 38, but it should be appreciated that the sliding panel 64 can also slide in other directions, e.g. vertically, without departing from the nature of the present invention. In
As shown in
The vertical and horizontal seals 76, 80 are typically coupled, e.g. adhered, to the first and second fixed panels 24, 26 and the first and second tracks 36, 38 with an attachment element 81, such as a tape, an adhesive film or an encapsulant. However, it should be appreciated that the vertical and horizontal seals 76, 80 may be coupled to the first and second fixed panels 24, 26 and the tracks 36, 38 in any fashion. The vertical and horizontal seals 76, 80 are formed of any suitable material without departing from the nature of the present invention. For example, the vertical and horizontal seals 76, 80 are preferably ethylene propylene diene monomer. Alternatively, for example, the vertical seal 76 and the horizontal seal 80 are thermoplastic vulcanizates or thermoplastic elastomer. Typically, the vertical and horizontal seals 76, 80 are applied after the adhesive surface bonding, e.g. the glass encapsulation of the first and second tracks 36, 38 to the first and second fixed panels 24, 26, but can be applied at any time.
Referring to
Although not required,
Referring to
Referring to
The sliding window assembly 20 includes at least one bracket 100 for coupling the cable 90 to the sliding panel 64. The bracket 100 transfers the force from the cable 90 to the sliding panel 64 for sliding the sliding panel 64 within the sliding window assembly 20. Generally, the sliding panel 64 is disposed on the sliding panel 64 proximate to the bottom edge 72 of the sliding panel 64. Typically, the bracket 100 is within the channel 44 below the horizontal seal 80 such that the horizontal seal 80 prevents the environmental elements from contacting the sliding panel 64. The bracket 100 is spaced a distance D typically of from about 1 to about 15, more typically from about 2 to about 10, and even more typically about 5 millimeters. Spacing the bracket 100 from the bottom edge 72 of the sliding panel 64 allows the bottom edge 72 of the sliding panel 64 is in sliding engagement with the second track 38. Allowing the bottom edge 72 of the sliding panel 64 to engage the second track 38 eliminates the need for a carrier sleeve which eliminates the need for different tracks for power sliding window assemblies as compared to manual sliding window assemblies.
The bracket 100 is substantially parallel to the bottom edge 72 of the sliding panel 64 and spans the entire width W of the sliding panel 64. Said differently, the bracket 100 runs along the bottom edge 72 of the sliding panel and extends past both the first edge 66 and the second edge 68 of the sliding panel 64. The bracket 100 is disposed on the interior surface 52 of the sliding panel 64. It is to be appreciated that the bracket 100 may be disposed on only the interior surface 52 of the sliding panel 64. Alternatively, the bracket 100 may be disposed on the interior surface 52 of the sliding panel 64 and one of the edges 66, 68 of the sliding panel 64. Furthermore, the bracket 100 may be disposed on both the exterior and interior surfaces 50, 52 and one of the edges 66, 68, as shown in
The bracket 100 is molded from a molding material. The bracket 100 may be molded by any method known in the art such as injection molding and reaction injection molding. Additionally, when the bracket 100 is molded directly to the sliding panel 64, the bracket 100 is molded by glass encapsulation similar to the tracks 36, 38 as described above. When glass encapsulation is employed to form the bracket 100, the bracket 100 comprises the encapsulant that results from the glass encapsulation. It is to be appreciated that a primer may be applied to the sliding panel 64 prior to molding the bracket 100 for increasing a bond strength between the bracket 100 and the sliding panel 64. Alternatively, the bracket 100 can be molded without the sliding panel 64 present and subsequently coupled to the sliding panel 64 by an adhesive.
When injection molding in employed to mold the bracket 100, the molding material typically comprises a thermoplastic material, and more typically comprises polyvinyl chloride (PVC). When reaction injection molding is employed to mold the bracket 100, the molding material typically comprises a thermoset polymer, and more typically comprises an isocyanate component and an isocyanate-reactive component, and even more typically comprises a polyurethane. An example of suitable polyurethanes, for the purposes of the present invention, are commercially available from BASF Corporation under the tradename of COLO-FAST™, e.g. COLO-FAST LM-161. However, it is to be appreciated that the molding material may comprise any suitable material for molding the bracket 100.
With reference to the bracket 100, the glass encapsulation can be further defined as single-sided glass encapsulation, double-sided encapsulation, or triple-sided encapsulation. Preferably, triple-sided encapsulation is employed which results in the bracket 100 being disposed on both the exterior and interior surfaces 50, 52 of the sliding panel 64 and the edges 66, 68 of the sliding panel 64, as shown in
At least one of the first end 92 of the cable 90, the second end 94 of the cable 90, and the body portion 96 of the cable is molded within the bracket 100. In other words, the first end 92 of the cable 90 by itself can be molded into the bracket 100, the second end 94 of the cable 90 by itself can be molded into the bracket 100, or the body portion 96 of the cable 90 by itself can be molded into the bracket 100. Additionally, combination of the first end 92 of the cable 90, the second end 94 of the cable 90, and the body portion 96 of the cable 90 can be molded into the bracket 100. The cable 90 is molded into the bracket 100 for coupling the cable 90 to the bracket 100 for transferring the force from the cable 90 to the bracket 100 to slide the sliding panel 64 along the tracks 36, 38. Generally, the cable 90 is molded into the bracket 100 as the bracket 100 is molded. Said differently, the molding material encapsulates the cable 90 resulting in the formation of the bracket 100 about the cable 90. Molding the cable 90 into the bracket 100 provides a strong bond between the cable 90 and the bracket 100 that does not degrade over time which extends a life of the sliding window assembly 20. Additionally, the strong bond between the cable 90 and the bracket 100 prevents the cable 90 from being pulled out of the bracket 100 when the force is transferred to from the cable 90 to the bracket 100 for moving the sliding panel 64. Typically, molding the cable 90 within the bracket 100 provides a pull strength of from about 50 to about 200, more typically from about 80 to about 180, and most typically from about 80 to 100 kgf. As described above, the force applied to the bracket 100 typically does not exceed 50 kgf. Therefore, the pull strength achieved by molding the cable 90 within the bracket 100 exceeds the force typically applied to the bracket 100.
Referring to
Referring to
When the anchor 102 is the discrete component, the anchor 102 may be coupled to the cable 90, which, in effect, increases the surface area of the bracket 100 the cable 90 acts against. For example, the anchor 102 may be a washer or a grommet connected to the cable 90. It is to be appreciated that the anchor 102 may be coupled to the cable 90 outside of the bracket 100 and contact an exterior of the bracket 100 as the cable 90 applies the force to the bracket 100. The anchor 102 may comprise any suitable material such as metal, and plastic.
Referring to
The following is a description of a method of manufacturing the sliding panel 64 for use in the sliding window assembly 20. The method of manufacturing the sliding panel 64 includes the use of a mold assembly 112, as shown in
The method includes the steps of manipulating the mold assembly 112 into the open position to access the cavity 120 defined by the mold assembly 112 and positioning the cable 90 into the cavity 120. Typically, when the cable 90 is positioned into the cavity 120, the cable 90 is spaced from the mold surface 118. The method also includes the steps of manipulating the mold assembly 112 into the closed position to secure the cable 90 within the cavity 120 and injecting the molding material into the cavity 120 to mold the bracket 100 about the cable 90 with at least one of the first end 92, the second end 94, and the body portion 96 molded within the bracket 100. It is to be appreciated that the step of injecting a molding material may be further defined as injecting the isocyanate component and the isocyanate-reactive component into the cavity 120 to mold the bracket 100 about the cable 90. The molding material is allowed to solidify within the mold assembly 112 thereby forming the bracket 100. Molding the cable into the bracket during the formation of the bracket decreases an amount of time required to assembly the sliding window assembly because the cable is already coupled to the sliding panel which eliminates an added step of coupling the cable to the sliding window assembly.
The method further includes the step of coupling the bracket 100 to the sliding panel 64 to allow the force to be transferred from the cable 90 to the sliding panel 64 to slide the sliding panel 64 within the sliding window assembly 20. The method may include the step of applying an adhesive to the bracket 100 prior to the step of coupling the bracket 100 to the sliding panel 64. Alternatively, the step of injecting the molding material into the cavity 120 and the step of coupling the bracket 100 to the sliding panel 64 may be preformed simultaneously such that the bracket 100 is formed by glass encapsulation. For example, when the bracket 100 is formed by glass encapsulation, the molding material is allowed to solidify within the mold assembly 112 thereby forming the bracket 100 and bonding the bracket 100 to both the sliding panel 64 and the cable 90. As such, the method may also include the step of positioning the sliding panel 64 within the mold assembly 112 adjacent the cable 90 with the cavity 120 of the mold assembly 112 spaced from the bottom edge 72 of the sliding panel 64 prior to the step of manipulating the mold assembly 112 into the closed position. The method may also include the step of manipulating the mold assembly 112 into the open position to remove the sliding panel 64 from the mold assembly 112. When the anchor 102 is employed, the method may include the step of forming the anchor 103 in least one of the first end 92, the second end 94, and the body portion 96 of the cable 90 that is to be molded within the bracket 100 prior to manipulating the mold assembly 112 into the close position. When the anchor 102 is employed, the method may include the step of coupling the anchor 102 to the cable 90 prior to positioning the cable 90 into the cavity 120.
Referring to
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
The subject patent application claims priority to and all the benefits of U.S. Provisional Patent Application Ser. No. 61/199,704 which was filed on Nov. 19, 2008, the entire specification of which is expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61199704 | Nov 2008 | US |