The present invention belongs to the technical field of microfluidic chips, and particularly relates to a sliding removable coaxial capillary microfluidic chip and a preparation method therefor.
Coaxial glass capillary microfluidic chips are a kind of widely used microcapsule production devices. Among which, capsules with a core-shell structure have been widely used because of the special structure thereof, and have wide application prospects from drug coating and controlled release of nutrients, to rapid detection of trace liquid, molecular capture, fluorescence detection and display, etc. A coaxial glass capillary microfluidic chip device is composed of two circular capillaries with conical heads, which are coaxially arranged in a square capillary and separated from each other by a certain distance. If the two circular capillaries are not coaxial, it is not possible to produce a capsule with a core-shell structure. In the process of manufacture, it requires a lot of practice to accurately align the two circular capillaries in the square capillary, and the manufacture is complicated and easy to fail. In addition, when liquid flows in a prepared chip, if the chip is disturbed or blocked by an unfiltered foreign matter in the liquid, the liquid cannot flow normally, so that the chip is scrapped and cannot be used any longer, and it is necessary to manufacture a new chip; Moreover, after the circular capillaries are coaxially arranged in the square capillary, if the relative distance between the two circular capillaries is not suitable, it is also not possible to produce a qualified capsule with a core-shell structure. In a traditional chip manufacture process, epoxy glue is usually used for fixing, the two circular capillaries cannot be moved, and the relative distance cannot be adjusted. If the experiment fails, it is also necessary to manufacture a new chip.
Therefore, improving the existing design and preparation process of coaxial glass capillary microfluidic chips will have a significant application value for the production of core-shell microcapsules.
In the present invention, 3D printing technology is used to creatively design an accessory with a sliding groove structure, which not only ensures the accurate coaxial arrangement in the square capillary, but also realizes the removable and repeated use of the chip. Therefore, the chip can be removed to clean the blockage even when the chip is blocked. In addition, the relative distance between the two circular capillaries with conical heads can be adjusted, which improves the operability of the experiment. The use of epoxy glue is reduced, the steps of assembling the chip are simplified, and a high standard coaxial glass capillary microfluidic chip can be prepared without a lot of practice. The method of the present invention has high repeatability and requires no further processing, which improves the quality of the microfluidic chip manufactured and paves a way for subsequent experiments.
To solve the problems in the prior art, the present invention provides a sliding removable coaxial capillary microfluidic chip and a preparation method therefor.
To achieve the above purpose of the present invention, the present invention adopts the following technical solution:
The present invention provides a coaxial capillary microfluidic chip, comprising two circular capillaries and one square capillary, and further comprising:
In the above technical solution, further, a lug boss is arranged outside the alignment platform II on the side close to the circular groove II, and a fixing hole I is formed in the lug boss for accommodating a sealed tube; preferably, a seal gasket is removably fixed on the lug boss, and a fixing hole II is formed in the seal gasket; the fixing hole I and the fixing hole II are coaxial with the circular groove II; the inner diameter of the fixing hole I is matched with the outer diameter of the sealed tube used, and the inner diameters of the sealed tube and the fixing hole II are matched with the outer diameters of the circular capillaries.
In the above technical solution, further, a hole I with internal threads is formed in the alignment platform I on the side close to the circular groove I; a hole II and a hole III with internal threads are respectively formed in both ends of the fixed tube, and a circular groove III is formed inside the fixed tube to make the hole II and the hole III communicated; the inner diameters of the hole I, the hole II and the hole III are matched with back taper joints used, and the back taper joints used are matched with the circular capillaries; the inner diameter of the circular groove III is matched with the outer diameter of one circular capillary.
In the above technical solution, further, a liquid inlet hole I is formed in the top of the alignment platform I and is in communication with the square groove I; a liquid inlet hole II is formed in the top of the alignment platform II and is in communication with the square groove II; the inner diameters of the liquid inlet hole I and the liquid inlet hole II are matched with back taper joints used.
In the above technical solution, further, the window is located in the center of the substrate, and the window is a rectangular hole used for observing the alignment of the two circular capillaries in the square capillary.
In the above technical solution, further, the alignment platform I and the alignment platform II are cuboid; after the length of the alignment platform I satisfies the fixing of the circular capillaries, the ends of the circular capillaries extend out of the alignment platform I; as a minimum, the lengths of the alignment platform II and the sliding platform as well as the distance between the alignment platform II and the sliding platform satisfy that: the sliding of the sliding platform makes the circular capillaries move within the scope of the window in the square capillary.
In the above technical solution, further, a slot I and a slot II are formed in the opposite sides of the alignment platform I and the alignment platform II, and fixers are respectively placed in the slot I and the slot II to fix the square capillary; the fixers are cylinders and matched with the sizes of the slots.
The present invention also provides a preparation method for the coaxial capillary microfluidic chip, comprising the following steps:
In the above technical solution, further, in step (3), both ends of the square capillary are respectively fixed in the slot I and the slot II, then the fixers are placed in the slots to fix the square capillary, and epoxy glue is used for further sealing.
In the above technical solution, further, in step (3), the unground ends of the two circular capillaries are first placed in casing tubes and then placed in the back taper joints respectively, the back taper joint of one circular capillary is screwed into the hole I, the ground end is placed in the square groove I through the circular groove I, and the back taper joint of the other circular capillary is screwed into the hole; the sliding platform is pushed to make the ground end of the circular capillary enter the circular groove II through the sealed tube in the fixing hole I, and finally placed to an appropriate position in the square groove II.
Compared with the prior art, the present invention has the following beneficial effects:
Each accessory in the chip of the present invention can be manufactured in a large quantity, and the method of the present invention has high repeatability and requires no further processing, which saves the time cost during assembly.
The material of the chip of the present invention is cheap, the preparation method is simple and feasible, and a variety of materials, such as plastic, metal and polymer materials, can be used as the substrate of the chip.
In the figures: 1 circular capillary, 2 square capillary, 3 substrate, 4 window, 5 sliding groove, 6 alignment platform I, 6-1 circular groove I, 6-2 square groove I, 6-3 hole I, 6-4 liquid inlet hole I, 6-5 slot I, 7 alignment platform II, 7-1 circular groove II, 7-2 square groove II, 7-3 lug boss, 7-3-1 fixing hole I, 7-3-2 seal gasket, 7-3-3 fixing hole II, 7-4 liquid inlet hole II, 7-5 slot II, 8 sliding platform, 8-1 sliding base, 8-2 fixed tube, 8-2-1 circular groove III, 8-2-2 hole II, 8-2-3 hole III, 9 casing tube, 10 annular cutting edge, 11 sealed tube, 12 protection ring, 13 back taper joint, and 14 fixer.
The present invention will be further described below in detail in combination with specific embodiments, but will not be limited in any way.
A coaxial capillary microfluidic chip, comprising two circular capillaries (1) and one square capillary (2), and further comprising: a substrate (3), an alignment platform I (6), an alignment platform II (7) and a sliding platform (8); the substrate has a rectangular hole as a window (4); the window is located in the center of the substrate and is used for observing the alignment of the two circular capillaries in the square capillary;
The alignment platform I is cuboid and has a hole I (6-3) with internal threads on one side; the alignment platform I is internally provided with a circular groove I (6-1) and a square groove I (6-2) formed successively on the same axis; a liquid inlet hole I (6-4) is formed in the top of the alignment platform I and is in communication with the square groove I (6-2);
The alignment platform II (7) is cuboid and is internally provided with a circular groove II (7-1) and a square groove II (7-2) formed successively on the same axis; a liquid inlet hole II (7-4) is formed in the top of the alignment platform II (7) and is in communication with the square groove II (7-2); the inner diameters of the liquid inlet hole I (6-4) and the liquid inlet hole II (7-4) are matched with back taper joints used; liquid inlet hole I and the liquid inlet hole II are provided with protection rings (12).
A lug boss (7-3) is arranged outside the alignment platform II (7) on the side close to the circular groove II (7-1), and a fixing hole I (7-3-1) is formed in the lug boss for accommodating a sealed tube; a seal gasket (7-3-2) is removably fixed on the lug boss (7-3), and a fixing hole II (7-3-3) is formed in the seal gasket (7-3-2); the fixing hole I (7-3-1) and the fixing hole II (7-3-3) are coaxial with the circular groove II (7-1); the inner diameter of the fixing hole I (7-3-1) is matched with the outer diameter of the sealed tube used, and the inner diameters of the sealed tube and the fixing hole II (7-3-3) are matched with the outer diameters of the circular capillaries. After being placed in the fixing hole I (7-3-1), the sealed tube is fixed by the seal gasket (7-3-2).
A slot I (6-5) and a slot II (7-5) are formed in the opposite sides of the alignment platform I and the alignment platform II, and fixers are respectively placed in the slot I and the slot II to fix the square capillary; the fixers are cylinders and matched with the sizes of the slots.
The sliding platform (8) comprises a sliding base (8-1), wherein a fixed tube (8-2) is fixed on the sliding base for the circular capillaries to pass through; a hole II (8-2-2) and a hole III (8-2-3) with internal threads are respectively formed in both ends of the fixed tube (8-2), and a circular groove III (8-2-1) is formed inside the fixed tube (8-2) to make the hole II (8-2-2) and the hole III (8-2-3) communicated; the inner diameters of the hole I (6-3), the hole II (8-2-2) and the hole III (8-2-3) are matched with back taper joints used, and the back taper joints used are matched with the circular capillaries; the inner diameter of the circular groove III (8-2-1) is matched with the outer diameter of one circular capillary. A sliding groove (5) is formed on one side of the alignment platform II (7) on the substrate (3), and the sliding groove (5) is matched with the base (8-1) of the sliding platform, so that the sliding platform can move on the sliding groove.
The alignment platform I (6) and the alignment platform II (7) are respectively fixed on both sides of the window (4) in the substrate (3). Both ends of the square capillary are respectively placed in the square groove I (6-2) and the square groove II (7-2), one circular capillary enters the square groove (6-2) through the circular groove I (6-1), one end of the other circular capillary is placed in the fixed tube (8-2), and the other end enters the square groove (7-2) through the circular groove II (7-1).
The substrate material used for preparing the coaxial capillary microfluidic chip can be plastic, metal, polymer material, etc. In this embodiment, plastic substrate is selected, and the preparation method is as follows:
According to the preparation method of the present invention, the substrate, and the alignment platforms and the sliding platform of the chip can be prepared in batches in advance for use. When an experiment is needed to be carried out, the circular glass capillaries are ground and placed in the square capillary to be aligned coaxially according to the method in embodiment 2, and the relative distance between the two circular capillaries is adjusted by an aligner and a receiver.
When used, the back taper joints are respectively screwed into the two liquid inlet holes and the hole III (8-2-3) of the sliding platform. A test is carried out after liquid enters, and a microcapsule is obtained from the hole I (6-3).
During the experiment, when the relative positions of two capillaries need to be adjusted, the relative positions of the two circular capillaries can be adjusted by pushing the sliding platform.
When the capillaries are blocked, the capillaries, the sealed tube and the casing tubes can be removed, dredged, cleaned and used again.
Those skilled in the art familiar with the technical field can make various change and modifications to the technical solutions of the present invention using the technical contents disclosed above or amend same to equivalent embodiment of equivalent changes without departing from the scope of the technical solutions of the present invention. Therefore, any simple amendment, equivalent change and modification made to the above embodiments according to the technical essence of the present invention without departing from contents of technical solutions of the present invention shall fall within the protection scope of the technical solutions of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
202011501839.5 | Dec 2020 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/087194 | 4/14/2021 | WO |